Каталог заданий.
Багатогранники
Версия для печати и копирования в MS Word
1

Вода в по­су­дині, що має форму пра­виль­ної чо­ти­ри­кут­ної приз­ми, зна­хо­дить­ся на рівні h = 10 см. На якому рівні опи­нить­ся вода, якщо її пе­ре­ли­ти в іншу по­су­ди­ну, що має форму пра­виль­ної чо­ти­ри­кут­ної приз­ми, у якої сто­ро­на підста­ви втричі менша, ніж у даної? Відповідь дайте у сан­ти­мет­рах.



2

У пра­вильній три­кутній піраміді SABC з вер­ши­ною S бісек­три­си три­кут­ни­ка ABC пе­ре­ти­на­ють­ся в точці O. Площа три­кут­ни­ка ABC дорівнює 2; об'єм піраміди дорівнює 6. Знайдіть до­в­жи­ну відрізка OS.



3
Тип 12 № 657
i

У пра­вильній чо­ти­ри­кутній піраміді SABCD точка O - центр ос­но­ви, S - вер­ши­на,  SO=15,  BD = 16. Знайдіть бічне ребро  SA.



4
Тип 12 № 662
i

У пра­вильній три­кутній піраміді SABC точка M – се­ре­ди­на ребра AB, S – вер­ши­на. Відомо, що BC = 3, а площа бічної по­верхні піраміди дорівнює 45. Знайдіть до­в­жи­ну відрізка SM.



5
Тип 12 № 666
i

У пра­вильній три­кутній піраміді SABC Q – се­ре­ди­на ребра AB, S – вер­ши­на. Відомо, що BC =7, а площа бічної по­верхні піраміди дорівнює 42. Знайдіть до­в­жи­ну відрізка  SQ.



6

У по­су­ди­ну, що має форму пра­виль­ної три­кут­ної приз­ми, на­ли­ли воду. Рівень води до­ся­гає 80 см. На якій висоті пе­ре­бу­ва­ти­ме рівень води, якщо її пе­ре­ли­ти в іншу таку ж по­су­ди­ну, у якої сто­ро­на ос­но­ви в 4 рази більша, ніж у першої? Відповідь вис­ловіть у див.



7
Тип 12 № 693
i

Якщо кожне ребро куба збільши­ти на 1, його площа по­верхні збільшить­ся на 54. Знайдіть ребро куба.



8
Тип 12 № 694
i

Знайдіть площу по­верхні прямої приз­ми, на основі якої ле­жить ромб з діаго­на­ля­ми, рівними 6 і 8, а бічне ребро приз­ми дорівнює 10.



9
Тип 12 № 695
i

Знайдіть бічне ребро пра­виль­ної чо­ти­ри­кут­ної приз­ми, якщо сто­ро­на її ос­но­ви дорівнює 20, а площа по­верхні дорівнює 1760.



10
Тип 12 № 697
i

Сто­ро­ни підста­ви пра­виль­ної чо­ти­ри­кут­ної піраміди дорівню­ють 10, бічні ребра дорівню­ють 13. Знайдіть площу по­верхні цієї піраміди.



11
Тип 12 № 698
i

Сто­ро­ни підста­ви пра­виль­ної ше­сти­кут­ної піраміди дорівню­ють 10, бічні ребра дорівню­ють 13. Знайдіть площу бічної по­верхні цієї піраміди.



12
Тип 12 № 745
i

Знайдіть площу по­верхні пра­виль­ної чо­ти­ри­кут­ної піраміди, сто­ро­ни ос­но­ви якої дорівню­ють 6 і ви­со­та дорівнює 4.



13
Тип 12 № 756
i

Знайдіть площу бічної по­верхні пра­виль­ної чо­ти­ри­кут­ної піраміди, сто­ро­на ос­но­ви якої дорівнює 6 і ви­со­та дорівнює 4.



14

У пра­вильній чо­ти­ри­кутній піраміді ви­со­та дорівнює 12, об’єм дорівнює 200. Знайдіть бічне ребро цієї піраміди.



15
Тип 12 № 2244
i

Ви­со­та пра­виль­ної чо­ти­ри­кут­ної піраміди дорівнює 3 см, а сто­ро­на ї ос­но­ви 12 см. Знайдіть до­в­жи­ну бічного ребра піраміди.



16
Тип 12 № 2245
i

На ри­сун­ку зоб­ра­же­но фраг­мент роз­горт­ки пра­виль­ної чо­ти­ри­кут­ної приз­ми, утво­ре­ний з двох її сусідніх гра­ней. Ви­ко­ри­сто­ву­ю­чи за­зна­чені на ри­сун­ку розміри, об­числіть площу повної по­верхні цієї приз­ми.



17
Тип 12 № 2246
i

Сто­ро­на ос­но­ви пра­виль­ної три­кут­ної приз­ми дорівнює a, діаго­наль бічної грані — d. Укажіть фор­му­лу для об­чис­лен­ня площіv Sб бічної по­верхні цієї приз­ми.



18
Тип 12 № 2247
i

Пе­ри­метр ос­но­вип ра­виль­ної чо­ти­ри­кут­ної піраміди дорівню є 72 см. Визна­чте до­в­жи­ну ви­со­ти піраміди, якщо її апо­фем а дорівню є 15 см.



19
Тип 12 № 2248
i

Визна­чте площу бічної по­верхні пра­виль­ної три­кут­ної піраміди, до­в­жи­на сто­ро­ни ос­но­ви якої дорівнює 10 см, а до­в­жи­на бічного ребра — 13 см.



20
Тип 12 № 2249
i

Фігура SABC i S1A1B1C1 — пра­вильні три­кутні піраміди. Кожне ребро піраміди SABC вдвічі більше за відповідне ребро піраміди S1A1B1C1. Визна­чте площу бічної по­верхні піраміди SABC, якщо площа бічної грані S1A1B1 дорівнює 8 см2.



21
Тип 12 № 2250
i

Сто­ро­на ос­но­ви пра­виль­ної чо­ти­ри­кут­ної піраміди дорівнює 6 см, усі її бічні грані на­хи­лені до пло­щи­ни ос­но­ви під кутом 60°. Визна­чте площу бічної по­верхні цієї пірамід.



22
Тип 12 № 2251
i

Пе­ри­метр ос­но­ви пра­виль­ної три­кут­ної приз­ми дорівнює 12 см, а пе­ри­метр її бічної грані — 20 см. Визна­чте площу бічної по­верхні приз­ми.



23
Тип 12 № 2252
i

На ри­сун­ку зоб­ра­же­но пря­мо­кут­ник і три­кут­ник, що є гра­ня­ми пра­виль­ної три­кут­ної приз­ми. Пе­ри­метр цього пря­мо­кут­ни­ка дорівнює 38 см. Визна­чте площу ос­но­ви цієї приз­ми, якщо до­в­жи­на ви­со­ти приз­ми дорівнює 11 см.



24
Тип 12 № 2253
i

На ри­сун­ку зоб­ра­же­но пря­мо­кут­ник і рівно­бед­ре­ний три­кут­ник, які є гра­ня­ми прямої приз­ми. До­в­жи­ни ос­но­ви та бічної сто­ро­ни три­кут­ни­ка дорівню­ють 10 см і 13 см відповідно. Визна­чте площу повної по­верхні приз­ми, якщо площа її найбільшої бічної грані дорівнює 260 см2.



25
Тип 12 № 2260
i

Ви­со­та пра­виль­ної чо­ти­ри­кут­ної піраміди дорівнює 24, апо­фе­ма утво­рює з пло­щи­ною ос­но­ви піраміди кут 45°. Визна­чте до­в­жи­ну сто­ро­ни ос­но­ви цієї піраміди.



26
Тип 12 № 2261
i

Визна­чте до­в­жи­ну апо­фе­ми пра­виль­ної чо­ти­ри­кут­ної піраміди, якщо площа її повної по­верхні дорівнює 208 см2, а до­в­жи­на сто­ро­ни ос­но­ви — 8 см.



27
Тип 12 № 2262
i

Сто­ро­на ос­но­ви пра­виль­ної чо­ти­ри­кут­ної піраміди дорівнює 6 см, апо­фе­ма — 7 см. Визна­чте площу повної по­верхні цієї піраміди.



28
Тип 12 № 2331
i

Пе­ри­метр ос­но­ви пра­виль­ної чо­ти­ри­кут­ної піраміди дорівнює 72 см. Визна­чте до­в­жи­ну ви­со­ти піраміди, якщо її апо­фе­ма дорівнює 15 см.



29
Тип 12 № 2523
i

Пе­ри­метр ос­но­ви пра­виль­ної чо­ти­ри­кут­ної піраміди дорівнює 72 см. Об­числіть до­в­жи­ну ви­со­ти піраміди, якщо її апо­фе­ма дорівнює 15 см.


Завершить работу, свериться с ответами, увидеть решения.