Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
СКЛАДУ НМТ — математика
Функції, задані формулою
1.  
i

Увідповідніть функцію (1–3) та її вла­стивість (А–Д).

Функцiя

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = тан­генс x

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2x плюс 1

Вла­стивість функції

А функція не­пар­на

Б об­ластю зна­чень функції є мно­жи­на  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

В об­ластю визна­чен­ня функції є проміжок  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Г функція спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції має лише дві точки пе­ре­ти­ну з осями ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3
2.  
i

На ри­сун­ку зоб­ра­же­но графік функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , визна­че­ної на відрізку [−3; 4]. Уста­новіть відповідність між функцією (1–3) та абс­ци­сою (А—Д) точки пе­ре­ти­ну графіка цієї функції з графіком функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка .

 

Функція

1.   y=x плюс 1

2.   y= дробь: чис­ли­тель: 4, зна­ме­на­тель: x конец дроби

3.   y= левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x

Абс­ци­са точки пе­ре­ти­ну

А   x= минус 3

Б   x= минус 1

В   x=0

Г   x=1

Д   x=3

А
Б
В
Г
Д

1

2

3
3.  
i

Уста­новіть відповідність між функцією (1−3) та пря­мою, зоб­ра­же­ною на ри­сун­ку (А−Д), яка не має з графiком цiєї функцiї жодної спiльної точки.

Функція

1.   y= тан­генс x

2.   y = ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 2

3.   y = левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

Ескіз графіка функції

А

Б

В

Г

Д

А
Б
В
Г
Д

1

2

3

Уста­новіть відповідність між функцією (1−3) та її найбільшим зна­чен­ням на проміжку [0; 5] (А−Д).

Функцiя

1.   y = 2x минус 7

2.   y = минус x в квад­ра­те плюс 2

3.   y = синус 2x

Закінчен­ня ре­чен­ня

А    1

Б    2

В    3

Г    4

Д    5

А
Б
В
Г
Д

1

2

3
5.  
i

До кож­но­го по­чат­ку ре­чен­ня (1—3) доберіть його закінчен­ня (А—Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

 

По­ча­то­кре­чен­ня

1.    Пряма у=4,5x

2.    Пряма y= минус 4

3.    Пряма y=2x плюс 4

Закінчен­няре­чен­ня

А є па­ра­лель­ною прямій y=2x

Б    не має спільних точок з графіком функції y=x в квад­ра­те минус 1

В    пе­ре­ти­нає графік функції y=3 в сте­пе­ни x з абс­ци­сою x_0=2

Г є па­ра­лель­ною осі y

Д є бісек­три­сою І і III ко­ор­ди­нат­них чвер­тей.

А
Б
В
Г
Д

1

2

3
6.  
i

Уста­новіть відповідність між функцією (1−3) та її вла­стивістю (А−Д).

Функція

1.   y=x в квад­ра­те

2.   y=x в кубе плюс 1

3.   y=3 минус x

Вла­стивість

А    спадає на всій об­ласті визна­чен­ня

Б    зрос­тає на всій об­ласті визна­чен­ня

В    не­пар­на

Г    парна

Д    об­ластю зна­чень функції є проміжок  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3

До кож­но­го по­чат­ку ре­чен­ня (1−3) доберіть його закінчен­ня (А−Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1.    Функція y= ко­рень из: на­ча­ло ар­гу­мен­та: x минус 4 конец ар­гу­мен­та

2.    Функція y=x плюс 4

3.    Функція y=x в кубе

Закінчен­ня ре­чен­ня

А    спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .

Б    не визна­че­на в точці x = 1.

В    є пар­ною.

Г    на­бу­ває до­дат­но­го зна­чен­ня в точцi x = −3.

Д    є не­пар­ною.

А
Б
В
Г
Д

1

2

3

Уста­новіть відповідність між функцією (1–3) та її вла­стивістю (А–Д).

Функція

1.   y=x в квад­ра­те плюс 3

2.   y=2x минус 5

3.   y= дробь: чис­ли­тель: 3, зна­ме­на­тель: x конец дроби

Вла­стивість функції

A    графік функції си­мет­рич­ний відносно осі у

Б    графік функції розта­шо­ва­ний лише в першій ко­ор­ди­натній чверті

В    функція на­бу­ває від’ємного зна­чен­ня в точці x = 2,4

Г    графік функції про­хо­дить через по­ча­ток ко­ор­ди­нат

Д    графік функції си­мет­рич­ний відносно по­чат­ку ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3
9.  
i

Уста­новіть відповідність між функцією (1−3) і вла­стивістю (А−Д) її графіка

Функція

1.   y = ло­га­рифм по ос­но­ва­нию 2 x

2.   y = x в квад­ра­те плюс 3

3.   y = ко­си­нус x

Вла­стивіст ь графіка функції

А    не пе­ре­ти­нає вісь y

Б    па­ра­лель­ний осі х

В    розта­шо­ва­ний у всіх ко­ор­ди­нат­них чвер­тях

Г    має лише одну спільну точку з графіком рівнян­ня x в квад­ра­те плюс y в квад­ра­те = 9

Д    си­мет­рич­ний відносно по­чат­ку ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3

Увідповідніть функцію (1–3) та її вла­стивість (А–Д).

Функцiя

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 0,2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2 синус x

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: |x| конец ар­гу­мен­та

Вла­стивість функції

А функція парна

Б об­ластю зна­чень функції є мно­жи­на [−1; 1].

В об­ластю зна­чень функції є проміжок [−2; 2].

Г функція спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції має лише дві точки пе­ре­ти­ну з осями ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3
11.  
i

Увідповідніть функцію (1-3) та її вла­сти­вості (А-Д):

Функ­ция

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 3x плюс 8

Свой­ство функ­ции

А графік функції про­хо­дить через точку з ко­ор­ди­на­та­ми (0;1)

Б функція спадає на всій об­ласті визна­чен­ня

В функ­ция яв­ля­ет­ся пе­ри­о­ди­че­ской

Г графіком функції є пряма

Д функція спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая квад­рат­ная скоб­ка

А
Б
В
Г
Д

1

2

3
12.  
i

Увідповідніть функцію (1-3) та її вла­сти­вості (А-Д):

Функ­ция

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 3 минус 2x в квад­ра­те

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 2 x

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те минус 1

Свой­ство функ­ции

А функція спадає на об­ласті визна­чен­ня

Б графік функції являє собою па­ра­бо­лу, гілки якої спря­мо­вані вниз

В функція зрос­тає на об­ласті визна­чен­ня

Г графік функції являє собою па­ра­бо­лу, гілки якої спря­мо­вані вгору

Д графік функції про­хо­дить через по­ча­ток ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3

Со­от­не­си­те функ­цию (1−3) и ее свой­ства (А−Д):

Функ­ция

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2x минус 1

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус x в квад­ра­те плюс 4x минус 5

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­си­нус x

Свой­ство функ­ции

А функ­ция яв­ля­ет­ся пе­ри­о­ди­че­ской

Б гра­фик функ­ции имеет вид y = kx плюс b

В функ­ция до­сти­га­ет мак­си­му­ма в точке (2; 0)

Г гра­фик функ­ции про­хо­дит через точку на­ча­ла ко­ор­ди­нат

Д функ­ция до­сти­га­ет мак­си­му­ма в точке (2; −1)

А
Б
В
Г
Д

1

2

3

Співвіднесіть функцію (1-3) і її вла­сти­вості (А−Д):

Функція

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2, зна­ме­на­тель: x конец дроби

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 3 в сте­пе­ни x плюс 1

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 4 x минус 1

Вла­стивість функції

А об­ластю визна­чен­ня функції є проміжок  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая круг­лая скоб­ка

Б графік функції розта­шо­ва­ний у всіх чо­ти­рьох чвер­тях ко­ор­ди­нат­ної пло­щи­ни

В графік функції має дві асимп­то­ти

Г об­ластю визна­чен­ня функції є проміжок  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції пе­ре­ти­нає вісь Oy в точке  левая круг­лая скоб­ка 0; 2 пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3
15.  
i

До кож­но­го по­чат­ку ре­чен­ня (1–3) доберіть його закінчен­ня (А–Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1) Функція y = ко­рень из: на­ча­ло ар­гу­мен­та: x минус 4 конец ар­гу­мен­та

2) Функція y  =  2

3) Функція y = x в кубе

Закінчен­ня ре­чен­ня

А) спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая круг­лая скоб­ка

Б) не визна­че­на в точці x  =  1

В) на­бу­ває від’ємного зна­чен­ня в точці x  =  8

Г) на­бу­ває до­дат­но­го зна­чен­ня в точці x  =  −3

Д) є не­пар­ною

А
Б
В
Г
Д

1

2

3
16.  
i

У пря­мо­кутній де­кар­товій си­стемі ко­ор­ди­нат на пло­щині зоб­ра­же­но за­мкне­ну ла­ма­ну ABCA, де A(−1; 0), B(0; 1), C(1; 0). Уз­годь­те функцію (1–3) з кількістю (А–Д) спільних точок її графіка та ла­ма­ної ABCA.

Функція

A) y = 0

Б) y = 1 минус x в квад­ра­те

В) y = ко­си­нус x

Кількість спільних точок

А) жодної

Б) лише одна

В) лише дві

Г) лише три

Д) безліч

А
Б
В
Г
Д

1

2

3
17.  
i

Уз­годь­те твер­джен­ня (1–3) із функцією (А–Д), для якої це твер­джен­ня є пра­виль­ним.

ТВЕР­ДЖЕН­НЯ

1)  об­ластю зна­чень функції є проміжок  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

2)  графік функції си­мет­рич­ний відносно осі y

3)  най­мен­шо­го зна­чен­ня на відрізку [1; 4] функція на­бу­ває в точці x  =  4

ФУНКЦIЯ

А)   y = x в квад­ра­те плюс 4

Б)   y = x

В)   y = ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та

Г)   y = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка x

Д)   y = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби

 

А
Б
В
Г
Д

1

2

3
18.  
i

Доберіть до кож­но­го по­чат­ку ре­чен­ня (1–3) його закінчен­ня (А–Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

ПО­ЧА­ТОК РЕ­ЧЕН­НЯ

1)  Функ­ция  y = ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та

2)  Функ­ция  y = 4 минус x в квад­ра­те

3)  Функ­ция  y = 3 в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка

ЗАКIНЧЕН­НЯ РЕ­ЧЕН­НЯ

А)  має точку ло­каль­но­го мак­си­му­му.

Б)  має точку ло­каль­но­го мінімуму.

В)  є не­пар­ною.

Г)  зрос­тає на всій об­ласті визна­чен­ня.

Д)  на­бу­ває лише до­дат­них зна­чень.

 

А
Б
В
Г
Д

1

2

3