Поиск
?


Скопировать ссылку на результаты поиска



Всего: 9    1–9

Добавить в вариант

Тип Д8 B3 № 1478
i

Відрізок ОВ є про­екцією по­хи­лої АВ на пло­щи­ну  альфа (див. ри­су­нок). Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

 

I. Відрізки AB і OB пер­пен­ди­ку­лярні.

II. Відрізки AB і OA пер­пен­ди­ку­лярні.

III. Відрізки OB і OA пер­пен­ди­ку­лярні.


Тип Д8 B3 № 1481
i

У про­сторі за­да­но па­ра­лельні прямі тій. Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

 

I. Існує пло­щи­на, що містить обидві прямі m і n.

II. Існує пряма, що пе­ре­ти­нає обидві прямі m і n.

III. Існує точка, що на­ле­жить обом пря­мим m і n.


Тип Д8 B3 № 1597
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Чи па­ра­лельні прямі a та b, якщо ці прямі не мають спільних точок.

II. Чи па­ра­лельні прямі a та b, якщо ці прямі ле­жать у па­ра­лель­них пло­щи­нах?

III. Чи па­ра­лельні прямі a та b, якщо відомо, що прямі a та c па­ра­лельні, прямі b та c па­ра­лельні?


Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Чи вірно, що якщо пряма па­ра­лель­на двом пло­щи­нам, що пе­ре­ти­на­ють­ся, то лінія їх пе­ре­ти­ну па­ра­лель­на даній пло­щині?

II. Чи па­ра­лельні прямі a та b, якщо відомо, що прямі a та c па­ра­лельні, прямі b та c па­ра­лельні?

III. Чи вірно, що пряма, па­ра­лель­на пло­щині, па­ра­лель­на всім пря­мим, що ле­жать у пло­щині?


Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Чи вірно, що якщо дві прямі па­ра­лельні пло­щині, то ці прямі па­ра­лельні?

II. Чи вірно, якщо пряма а па­ра­лель­на прямій b, а b па­ра­лель­на пло­щині α, то a па­ра­лель­на пло­щині α?

III. Чи вірно, що якщо пло­щи­на про­хо­дить через пряму, па­ра­лель­ну до іншої пло­щи­ни, і пе­ре­ти­нає цю пло­щи­ну, то пряма пе­ре­ти­ну цих пло­щин па­ра­лель­на даній прямій.


Тип Д8 B3 № 1601
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Чи вірно, що прямі a та b схре­щу­ють­ся, якщо ці прямі ле­жать у різних пло­щи­нах?

II. Чи вірно, що прямі a та b пе­ре­ти­на­ють­ся, якщо будь-яка пло­щи­на, про­ве­де­на через пряму a та точку, що на­ле­жить прямій b, пе­ре­ти­нає b?

III. Чи вірно, що прямі a та b пе­ре­ти­на­ють­ся, якщо ці прямі не мають спільних точок?


Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I.Чи вірно, що прямі a і b пе­ре­ти­на­ють­ся, якщо кожна з цих пря­мих пе­ре­ти­нається з пря­мою с?

II. Чи вірно, що прямі a та b пе­ре­ти­на­ють­ся, якщо пряма b пе­ре­ти­нається з пря­мою c, а пряма c пе­ре­ти­нається з пря­мою a?

III. Чи вірно, що прямі a та b пе­ре­ти­на­ють­ся, якщо пряма a пе­ре­ти­нає пло­щи­ну, па­ра­лель­ну до прямої b?


Тип Д8 B3 № 1651
i

Какие из при­ве­ден­ных утвер­жде­ний яв­ля­ют­ся пра­виль­ны­ми?

I. Через любую точку про­стран­ства про­хо­дит един­ствен­ная пря­мая, пер­пен­ди­ку­ляр­ная дан­ной плос­ко­сти.

II. Рас­сто­я­ни­ем от точки до плос­ко­сти на­зы­ва­ет­ся длина пер­пен­ди­ку­ля­ра, про­ве­ден­но­го из этой точки к дан­ной плос­ко­сти.

III. Если одна из двух па­рал­лель­ных пря­мых пе­ре­се­ка­ет дан­ную плос­кость, то дру­гая пря­мая не  пе­ре­се­ка­ет эту плос­кость.


Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I.  Якщо одна з двох пря­мих ле­жить в деякій пло­щині, а інша пряма пе­ре­ти­нає цю пло­щи­ну в точці, що на­ле­жить першій прямій, то ці прямі схре­щу­ють­ся.

II.  Пра­виль­на приз­ма  — приз­ма, у якій всі бічні ребра пер­пен­ди­ку­лярні ос­но­ви, а в основі ле­жить довільний ба­га­то­кут­ник.

III.  Піраміда на­зи­вається пра­виль­ною, якщо її ос­но­вою є пра­виль­ний ба­га­то­кут­ник, а вер­ши­на про­ек­тується в центр підста­ви.

Всего: 9    1–9