Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
СКЛАДУ НМТ — математика
Вариант № 8969
1.  
i

Кисть, яка ко­шту­ва­ла 240 рублів, продається з 25% зниж­кою. При по­купці двох таких пензлів по­ку­пе­ць віддав ка­си­ру 500 рублів. Скільки рублів здачі він має от­ри­ма­ти?

А) 190
Б) 140
В) 145
Г) 195
Д) 130
2.  
i

О шостій годині ранку визна­че­но тем­пе­ра­ту­ру повітря на де­ся­ти ме­тео­станціях. От­ри­мані дані відо­бра­же­но в таб­лиці.

 

Тем­пе­ра­ту­ра (у гра­ду­сах)134x
Кількість ме­тео­станцій2341

Визна­чте х, якщо се­реднє ариф­ме­тич­не всіх цих даних дорівнює 3,5°.

А) x  =  5
Б) x  =  6
В) x  =  7
Г) x  =  8
Д) x  =  9
3.  
i

Що є ос­но­вою пра­виль­ної приз­ми?

А) відрізок
Б) пря­мо­кут­ник
В) тра­пеція
Г) па­ра­ле­ло­грам
Д) пра­виль­ний ба­га­то­кут­ник
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 24 в сте­пе­ни 4 , зна­ме­на­тель: 3 в квад­ра­те умно­жить на 8 в кубе конец дроби .

А) 64
Б) 72
В) 86
Г) 92
Д) 100
5.  
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 38°, ∠ AMN = 109°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.

А) 33°
Б) 52°
В) 26°
Г) 30°
Д) 60°
6.  
i

Розв’яжіть рівнян­ня  дробь: чис­ли­тель: 2x, зна­ме­на­тель: 3 конец дроби плюс дробь: чис­ли­тель: 3x плюс 1, зна­ме­на­тель: 4 конец дроби минус 2 = дробь: чис­ли­тель: 13, зна­ме­на­тель: 12 конец дроби .

А) 0
Б) 2
В) 4
Г) 1
Д) 3
7.  
i

На ри­сун­ку зоб­ра­же­но графік функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка визна­че­ної на проміжку [−2; 4]. Укажіть куль цієї функції.

А) x = −2
Б) x = 0
В) x = 1
Г) x = 2
Д) x = 4
8.  
i

Роз­кладіть на множ­ни­ки вираз 25 x в квад­ра­те минус 1.

А)  левая круг­лая скоб­ка 25x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка
Б)  левая круг­лая скоб­ка 5x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те
В)  левая круг­лая скоб­ка 5x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5x плюс 1 пра­вая круг­лая скоб­ка
Г) 5 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка
Д) 25 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка
9.  
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. гра­дус­на міра роз­гор­ну­то­го кута дорівнює 180°.

II. У рівно­бед­ре­но­му три­кут­ни­ку бісек­три­са, про­ве­де­на до ос­но­ви, є медіаною і ви­со­тою.

III. Площу рівно­сто­рон­ньо­го три­кут­ни­ка можна знай­ти за фор­му­лою S_\triangle = дробь: чис­ли­тель: a ко­рень из 3 , зна­ме­на­тель: 4 конец дроби .

А) I, II та III
Б) I та II
В) II та III
Г) I та III
Д) Тільки II
10.  
i

Спро­сти­ти вираз: дробь: чис­ли­тель: 3x в квад­ра­те y, зна­ме­на­тель: 9xy в кубе конец дроби .

А) 27x в кубе y в сте­пе­ни 4
Б)  дробь: чис­ли­тель: x в кубе y в сте­пе­ни 4 , зна­ме­на­тель: 3 конец дроби
В)  дробь: чис­ли­тель: 3x, зна­ме­на­тель: y в квад­ра­те конец дроби
Г)  дробь: чис­ли­тель: x в кубе , зна­ме­на­тель: 3y в сте­пе­ни 4 конец дроби
Д)  дробь: чис­ли­тель: x, зна­ме­на­тель: 3y в квад­ра­те конец дроби
11.  
i

Розв’яжіть си­сте­му нерівно­стей:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 5x плюс 7, зна­ме­на­тель: 6 конец дроби минус дробь: чис­ли­тель: 3x, зна­ме­на­тель: 4 конец дроби мень­ше дробь: чис­ли­тель: 11x минус 7, зна­ме­на­тель: 12 конец дроби , дробь: чис­ли­тель: 1 минус 3x, зна­ме­на­тель: 2 конец дроби минус дробь: чис­ли­тель: 1 минус 4x, зна­ме­на­тель: 3 конец дроби боль­ше или равно дробь: чис­ли­тель: x, зна­ме­на­тель: 6 конец дроби минус 1. конец си­сте­мы .

А)  левая круг­лая скоб­ка 2,1; 3,5 пра­вая квад­рат­ная скоб­ка
Б)  левая квад­рат­ная скоб­ка 2,1; 3,5 пра­вая круг­лая скоб­ка
В)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2,1 пра­вая круг­лая скоб­ка
Г)  левая квад­рат­ная скоб­ка 3,5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
Д)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 3,5 пра­вая квад­рат­ная скоб­ка
12.  
i

У пра­вильній три­кутній піраміді SABC точка M – се­ре­ди­на ребра AB, S – вер­ши­на. Відомо, що BC = 3, а площа бічної по­верхні піраміди дорівнює 45. Знайдіть до­в­жи­ну відрізка SM.

А) 10
Б) 5
В) 15
Г) 30
Д) 25
13.  
i

Знайдіть корінь рівнян­ня  \log }_2} левая круг­лая скоб­ка 15 плюс x пра­вая круг­лая скоб­ка =\log _23.

А)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 12 пра­вая квад­рат­ная скоб­ка
Б)  левая круг­лая скоб­ка 0;2 пра­вая круг­лая скоб­ка
В)  левая квад­рат­ная скоб­ка минус 7; минус 3 пра­вая круг­лая скоб­ка
Г)  левая круг­лая скоб­ка минус 11; минус 6 пра­вая квад­рат­ная скоб­ка
Д)  левая круг­лая скоб­ка минус 2;1 пра­вая круг­лая скоб­ка
14.  
i

Знайдіть площу пря­мо­кут­но­го три­кут­ни­ка, якщо його ка­те­ти дорівню­ють 5 і 8.

А) 20
Б) 10
В) 40
Г) 15
Д) 8
15.  
i

Ви­ко­ри­сто­ву­ю­чи фор­му­лу Нью­то­на-Лейбніца, об­числіть  S = ин­те­грал пре­де­лы: от 1 до 2, левая круг­лая скоб­ка x в квад­ра­те плюс 2 пра­вая круг­лая скоб­ка dx .

А)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
Б)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 3 конец дроби
В)  дробь: чис­ли­тель: 14, зна­ме­на­тель: 3 конец дроби
Г)  дробь: чис­ли­тель: 22, зна­ме­на­тель: 3 конец дроби
Д)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 3 конец дроби
16.  
i

На ри­сун­ках (1−3) зоб­ра­же­но графіки функцій, визна­че­них на відрізку [−4; 4].

Рис. 1

Рис. 2

Рис. 3

До кож­но­го п очат­ку ре­чен­ня (1−3) доберіть його закінчен­ня (А−Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1.    Функція, графік якої зоб­раж ено на рис. 1,

2.    Функція, графік якої зоб­раж ено на рис. 2,

3.    Функція, графік якої зоб­раж ено на рис. 3,

Закінчен­ня ре­чен­ня

А    рис. є не­пар­ною.

Б    рис. на­бу­ває найбільшо­го зна­чен­ня, що дорівнює 4.

В    рис. є пар­ною.

Г    рис. має три нулі.

Д    рис. має дві точки ло­каль­но­го екс­тре­му­му.

А
Б
В
Г
Д

1

2

3
17.  
i

Уста­новіть відповідність між чис­ло­вим ви­ра­зом (1—3) та його зна­чен­ням (А—Д).

 

По­ча­ток ре­чен­ня

1.   2 в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка :2 в сте­пе­ни 0

2.    минус 2 в сте­пе­ни левая круг­лая скоб­ка минус 11 пра­вая круг­лая скоб­ка умно­жить на 8

3.   20 в сте­пе­ни 4 : левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка в сте­пе­ни 4

Зна­чен­ня чис­ло­во­го ви­ра­зу

А    256

Б    −256

В     минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

Г     дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

Д    32

А
Б
В
Г
Д

1

2

3
18.  
i

Уста­новіть відповідність між гео­мет­рич­ною фігурою (1—3) та радіусом кола (А—Д), впи­са­но­го в цю гео­мет­рич­ну фігуру.

Рис. 1

Рис. 2

Рис. 3

Гао­мет­рич­на фігура

1.    пра­виль­ний три­кут­ник, ви­со­та якого дорівнює  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та (рис. 1)

2.    ромб, ви­со­та якого дорівнює  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та (рис. 2)

3.    квад­рат, діаго­наль якого дорівнює  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та (рис. 3)

Радіус кола, впи­са­но­го в гео­мет­рич­ну фігуру

А    дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби

Б    1

В    дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби

Г    дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби

Д    дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби

А
Б
В
Г
Д

1

2

3

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I.Чи вірно, що прямі a і b пе­ре­ти­на­ють­ся, якщо кожна з цих пря­мих пе­ре­ти­нається з пря­мою с?

II. Чи вірно, що прямі a та b пе­ре­ти­на­ють­ся, якщо пряма b пе­ре­ти­нається з пря­мою c, а пряма c пе­ре­ти­нається з пря­мою a?

III. Чи вірно, що прямі a та b пе­ре­ти­на­ють­ся, якщо пряма a пе­ре­ти­нає пло­щи­ну, па­ра­лель­ну до прямої b?

20.  
i

Скільки всьо­го існує різних дво­циф­ро­вих чисел, у яких перша цифра є пар­ною, а друга  — не­пар­ною?

 

Відповідь: ,.

21.  
i

Даны век­то­ры \vec a левая круг­лая скоб­ка 3; 4 пра­вая круг­лая скоб­ка и \vec b левая круг­лая скоб­ка минус 4; минус 3 пра­вая круг­лая скоб­ка . Най­ди­те ко­си­нус угла между ними.

 

Відповідь: ,.

22.  
i

Опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра рав­но­силь­ны урав­не­ния  левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 1 пра­вая круг­лая скоб­ка \log _3 левая круг­лая скоб­ка 1 минус a пра­вая круг­лая скоб­ка =0 и a ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та =0.

 

Відповідь: ,.