Вариант № 8596

При выполнении заданий с кратким ответом отметьте верный ответ или впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:00:00
1
Тип 1 № 148
i

У понеділок пев­ний товар надійшов у про­даж за ціною 1000 грн. Відповідно до прий­ня­тих у ма­га­зині пра­вил ціна то­ва­ру про­тя­гом тижня за­ли­шається незмінною, а в пер­ший день кож­но­го на­ступ­но­го тижня знижується на 20% від по­пе­ред­ньої ціни. Скільки гри­вень ко­шту­ва­ти­ме товар на два­надця­тий день після на­д­ход­жен­ня у про­даж?



2
Тип 2 № 2547
i

Се­реднє ариф­ме­тич­не 4 чисел дорівнює 230, одне з чисел дорівнює 80. Чому дорівнює се­реднє ариф­ме­тич­не інших трьох чисел?



3
Тип 3 № 2574
i

Скільки вер­шин і ребер у три­кут­ної приз­ми?



4

5
Тип 5 № 1807
i

До­в­жи­ни сторін АВ та ВС пря­мо­кут­ни­ка АВСD відно­ся­ть­ся як 2:5, а його пе­ри­метр дорівнює 28 см. Визна­чте до­в­жи­ну більшої сто­ро­ни цього пря­мо­кут­ни­ка.



6
Тип 6 № 1617
i

Розв’яжіть рівнян­ня 4 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка = 2x плюс 3 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка .



7
Тип 7 № 1824
i

Укажіть з-поміж на­ве­де­них функцію f(х), якщо для кож­но­го х з об­ласті її визна­чен­ня ви­ко­нується рівність f левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка = минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка .



8
Тип 8 № 1902
i

 левая круг­лая скоб­ка ко­рень из 2 минус a пра­вая круг­лая скоб­ка левая круг­лая скоб­ка ко­рень из 2 плюс a пра­вая круг­лая скоб­ка =



9
Тип 9 № 1584
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Якщо дуга кола ста­но­вить 80°, то впи­са­ний кут, що спирається на цю дугу, дорівнює 40°.

II. Якщо радіуси двох кіл дорівнює 5 і 7, а відстань між їх цен­тра­ми дорівнює 3, то ці кола не мають спільних точок.

III. Якщо радіуси двох кіл дорівню­ють 2 і 5, а відстань між їх цен­тра­ми дорівнює 3, то ці кола тор­ка­ють­ся.



10
Тип 10 № 554
i

Ре­зуль­тат спро­щен­ня ви­ра­зу  дробь: чис­ли­тель: a в квад­ра­те плюс 5a, зна­ме­на­тель: a плюс 3 конец дроби плюс дробь: чис­ли­тель: 6a, зна­ме­на­тель: a в квад­ра­те плюс 3a конец дроби має вид:



11

Вкажіть номер ма­люн­ка, на якому по­ка­за­но розв’язок си­сте­ми нерівно­стей  си­сте­ма вы­ра­же­ний x\leqslant минус 1,4,1 минус 2x мень­ше 5. конец си­сте­мы .

1)

2)

3)

4)

5)



12
Тип 12 № 2253
i

На ри­сун­ку зоб­ра­же­но пря­мо­кут­ник і рівно­бед­ре­ний три­кут­ник, які є гра­ня­ми прямої приз­ми. До­в­жи­ни ос­но­ви та бічної сто­ро­ни три­кут­ни­ка дорівню­ють 10 см і 13 см відповідно. Визна­чте площу повної по­верхні приз­ми, якщо площа її найбільшої бічної грані дорівнює 260 см2.



13
Тип 13 № 407
i

Розв’яжіть рівнян­ня  левая круг­лая скоб­ка 2x плюс 7 пра­вая круг­лая скоб­ка в квад­ра­те = левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те .



14
Тип 14 № 2480
i

Ос­но­ва­ния тра­пе­ции равны 4 и 10. Най­ди­те боль­ший из от­рез­ков, на ко­то­рые делит сред­нюю линию этой тра­пе­ции одна из её диа­го­на­лей.



15

Укажіть похідну функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2x минус 3, зна­ме­на­тель: x конец дроби .



16

Со­от­не­си­те функ­цию (1−3) и ее свой­ства (А−Д):

Функ­ция

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2x минус 1

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус x в квад­ра­те плюс 4x минус 5

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­си­нус x

Свой­ство функ­ции

А функ­ция яв­ля­ет­ся пе­ри­о­ди­че­ской

Б гра­фик функ­ции имеет вид y = kx плюс b

В функ­ция до­сти­га­ет мак­си­му­ма в точке (2; 0)

Г гра­фик функ­ции про­хо­дит через точку на­ча­ла ко­ор­ди­нат

Д функ­ция до­сти­га­ет мак­си­му­ма в точке (2; −1)

А
Б
В
Г
Д

1

2

3


17
Тип 17 № 1558
i

Уста­новіть відповідність між ви­ра­зом (1−3) і твер­джен­ням про його зна­чен­ня (А−Д), яке є пра­виль­ним, якщо a = минус целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 .

Вираз

1.   a в квад­ра­те

2.   a плюс |a|

3.    ло­га­рифм по ос­но­ва­нию 5 5 в сте­пе­ни левая круг­лая скоб­ка a пра­вая круг­лая скоб­ка

Твер­джен­ня про зна­чен­ня ви­ра­зу

А    більше від 5

Б    на­ле­жить проміжку (0; 1)

В є від’ємним чис­лом

Г    на­ле­жить проміжку [1; 5)

Д    дорівнює 0

А
Б
В
Г
Д

1

2

3


18
Тип 18 № 1547
i

На більшій основі АО рівнобічної тра­пеції ABCD вибра­но точки К та М так, що ВК||CD, MC||AB (див. ри­су­нок). Відрізки ВК та СМ пе­ре­ти­на­ють­ся в точці О, ВО : ОК = 2 : 3. Пе­ри­метр чо­ти­ри­кут­ни­ка ABCM дорівнює 84, ВС = 12. Уста­новіть відповідність між відрізком (1−3) та його до­в­жи­ною (А−Д).

Відрізок

1.    AB

2.    MK

3.    сред­ня лінія тра­пецї ABCD

До­в­жи­на відрізка

А    21

Б    30

В    18

Г    27

Д    54

А
Б
В
Г
Д

1

2

3


19
Тип 19 № 1655
i

В ариф­ме­тичній про­гресії (an) дру­гий член дорівнює 18, а різниця про­гресії d = 2,4. Знайдіть суму пер­ших 7 членів про­гресії.

 

Відповідь: ,.



20
Тип 20 № 2612
i

Учні двох класів (у пер­шо­му  — 20 учнів, у дру­го­му  — 25 учнів) оби­ра­ють по од­но­му пред­став­ни­ку з кож­но­го класу для участі у заході. Знайдіть ймовірність того, що учас­ни­ка­ми за­хо­ду буде обра­но ста­ро­сти цих класів. Вва­жай­те, що всі учні кож­но­го класу мають од­на­кові шанси стати учас­ни­ка­ми за­хо­ду, і кожен клас має од­но­го ста­ро­сту.

 

Відповідь: ,.



21
Тип 21 № 2649
i

В пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат в про­стран­стве задан век­тор \overrightarrowAB левая круг­лая скоб­ка 2;1;2 пра­вая круг­лая скоб­ка с на­ча­лом в точке A(−1; −2; 3). Вы­чис­ли­те мо­дуль век­то­ра \vecd = 2 \overrightarrowAB минус 2 \overrightarrowBA.

 

Відповідь: ,.



22
Тип 22 № 2699
i

Визна­чте кількість цілих зна­чень a, за яких корені x1 та x2 квад­рат­но­го рівнян­ня  x в квад­ра­те минус 4ax плюс 4a в квад­ра­те минус 25 = 0 за­до­воль­ня­ють умову  x_1 мень­ше 1 мень­ше x_2.

 

Відповідь: ,.


Завершить работу, свериться с ответами, увидеть решения.