Вариант № 8590

При выполнении заданий с кратким ответом отметьте верный ответ или впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:00:00
1
Тип 1 № 2655
i

На ри­сун­ку відо­бра­же­но зміну гу­сти­ни (мкг⁠/⁠м3) дрібно­дис­перс­но­го пилу в повітріпро­тя­гом доби в де­я­ко­му районі міста. Укажіть із-поміж на­ве­де­них проміжок часу (год), упро­до­вж якого гу­сти­на та­ко­го пилу в повітрі лише змен­шу­ва­ла­ся.



2
Тип 2 № 2543
i

Зрос­тан­ня фут­болістів, які грали на полі, було 1,74 м, 1,83 м, 1,9 м, 1,81 м, 1,75 м та 2,01 м. Об­числіть се­реднє зрос­тан­ня фут­болістів. Відповідь округліть до сотих.



3
Тип 3 № 2570
i

Ви­со­тою пря­мо­го ко­ну­са є відрізок, що з'єднує



4
Тип 4 № 2192
i

Об­чис­лив­ши  дробь: чис­ли­тель: 15 в кубе , зна­ме­на­тель: 3 в квад­ра­те конец дроби .



5
Тип 5 № 1795
i

Катет CB і riпо­те­ну­за AB пря­мо­кут­но­го три­кут­ни­ка ABC ле­жать на пря­мих, що пе­ре­ти­на­ють­ся під кутом 55° (див. ри­су­нок). Визна­чте гра­дус­ну міру \angle C A B.



6
Тип 6 № 2206
i

Знайдіть корінь рівнян­ня 8 левая круг­лая скоб­ка 6 плюс x пра­вая круг­лая скоб­ка плюс 2x = 8.



7
Тип 7 № 1823
i

Парна функція y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка визна­че­на на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка . Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. f левая круг­лая скоб­ка минус 10 пра­вая круг­лая скоб­ка = минус f левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка .

II. f левая круг­лая скоб­ка минус 6 пра­вая круг­лая скоб­ка =f левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка .

III. Графік функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка си­мет­рич­ний відносно осі y.



8
Тип 8 № 1905
i

Спростіть вираз  дробь: чис­ли­тель: x в квад­ра­те плюс 4x плюс 4, зна­ме­на­тель: x в квад­ра­те плюс 2x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 4, зна­ме­на­тель: x в кубе конец дроби .



9
Тип 9 № 2685
i

Доберіть закінчен­ня ре­чен­ня так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня: «Циліндр утво­ре­ний обер­тан­ням...



10
Тип 10 № 552
i

Ре­зуль­тат роз­кла­дан­ня мно­го­чле­на x (6 ab ) + b − 6 a на множ­ни­ки має вигляд:



11
Тип 11 № 1475
i

Розв’яжіть си­сте­му нерівно­стей:  си­сте­ма вы­ра­же­ний 4x плюс 2 боль­ше или равно 5x плюс 3,2 минус 3x мень­ше 7 минус 2x. конец си­сте­мы .



12
Тип 12 № 756
i

Знайдіть площу бічної по­верхні пра­виль­ної чо­ти­ри­кут­ної піраміди, сто­ро­на ос­но­ви якої дорівнює 6 і ви­со­та дорівнює 4.



13
Тип 13 № 469
i

Розв’яжіть рівнян­ня  ло­га­рифм по ос­но­ва­нию x 32=5.



14
Тип 14 № 2224
i

У пря­мо­кут­ни­ку відстань від точки пе­ре­ти­ну діаго­на­лей до меншої сто­ро­ни на 1 більша, ніж відстань від неї до більшої сто­ро­ни. Пе­ри­метр пря­мо­кут­ни­ка дорівнює 28. Знайдіть меншу сто­ро­ну пря­мо­кут­ни­ка.



15

Функція F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =10x в сте­пе­ни 5 минус 4 є первісною функції f(х). Укажіть функцію G(х), яка також є первісною функції f(х).



16

На ри­сун­ках (1−3) зоб­ра­же­но графіки функцій, кожна з яких визна­че­на на проміжку [−3; 3]. Уста­новіть відповідність між графіком (1−3) функції та вла­стивістю (А−Д) цієї функції.

Графік функції

1.

2.

3.

Гра­дус­на мiра впи­са­но­го кута ACB

А    графік функції двічі пе­ре­ти­нає графік функції y = 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

Б    графік функції є фраг­мен­том графіка функції y = 1 минус x

В    графік функції є фраг­мен­том графіка функції y = 1 плюс x

Г    функція є не­пар­ною

Д    функція зрос­тає на проміжку [0; 3]

А
Б
В
Г
Д

1

2

3


17
Тип 17 № 2456
i

До кож­но­го по­чат­ку ре­чен­ня (1−3) доберіть його закінчен­ня (А−Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1.    Сума чисел 32 і 18

2.    До­бу­ток чисел 32 і 18

3.    Част­ка чисел 32 і 18

Закінчен­ня ре­чен­ня

А є квад­ра­том на­ту­раль­но­го числа

Б є чис­лом, що ділить­ся наділо на 10

В є най­мен­шим спільним крат­ним чисел 32 і 18

Г є раціональ­ним чис­лом, яке не є цілим

Д є дільни­ком числа 84

А
Б
В
Г
Д

1

2

3


18
Тип 18 № 1559
i

Квад­рат АВСD й пря­мо­кут­на тра­пеція ВМNС ле­жать в одній пло­щині (див. ри­су­нок). Площа кожної із цих фігур дорівнює 36 см2, АМ = 15 см. Уста­новіть відповідність між відрізком (1−3) і його до­в­жи­ною (А−Д).

Відрізок

1.    сто­ро­на квад­ра­та АВСD

2.    ви­со­та тра­пецiї BMNC

3.    менша ос­но­ва тра­пецiї BMNC

До­в­жи­на відрізка

А    2 см

Б    3см

В    4см

Г    6 см

Д    9см

А
Б
В
Г
Д

1

2

3


19
Тип 19 № 627
i

Ви­пи­сані перші кілька членів гео­мет­рич­ної про­гресії: 17, 68, 272, … Знайдіть її чет­вер­тий член.

 

Відповідь: ,.



20
Тип 20 № 2531
i

Ре­дак­тор стрічки новин вирішує, у якій послідов­ності розмістити 6 різних новин: 2 політичні, 3 суспільні та 1 спор­тив­ну. Скільки всьо­го є різних послідов­но­стей розміщення цих 6 новин у стрічці за умови, що політичні но­ви­ни мають пе­ре­ду­ва­ти іншим, а спор­тив­на но­ви­на має бути остан­ньою? Ува­жай­те, що кожна з цих 6 новин у стрічці не по­вто­рю­ва­ти­меть­ся.

Відповідь: ,.



21
Тип 21 № 2645
i

В пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат в про­стран­стве за­да­ны точки А (1; 3; −8) и B (6; −5; –10). Най­ди­те мо­дуль век­то­ра \overrightarrowAB. В ответ за­пи­ши­те квад­рат най­ден­но­го мо­ду­ля.

 

Відповідь: ,.



22
Тип 22 № 2445
i

За­да­но не­ра­вен­ство

x в квад­ра­те плюс 4x плюс 6a|x плюс 2| плюс 9a в квад­ра­те \leqslant0,

где x — пе­ре­мен­ная, a — па­ра­метр. Най­ди­те наи­боль­шее целое зна­че­ние a, при ко­то­ром не­ра­вен­ство имеет не более од­но­го ре­ше­ния.

 

Відповідь: ,.


Завершить работу, свериться с ответами, увидеть решения.