Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
СКЛАДУ НМТ — математика
Вариант № 8003
1.  
i

Прин­тер друкує одну сторінку про­тя­гом 14 се­кунд. Скільки сторінок можна над­ру­ку­ва­ти на цьому прин­тері за 7 хви­лин?

А) 37
Б) 32
В) 34
Г) 30
Д) 27
2.  
i

Знай­ти ціну 1 кг суміші, скла­де­ної з 6 кг горіхів по 300 руб. і 4 кг горіхів по 450 руб.

А) 360 руб.
Б) 320 руб.
В) 375 руб.
Г) 400 руб.
Д) 380 руб.
3.  
i

Роз­гор­нен­ня ко­ну­са є

А) кру­го­вий сек­тор
Б) коло
В) три­кут­ник
Г) пря­мо­кут­ник
Д) тра­пецiя
4.  
i

Спростіть вираз  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та .

А)  минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
Б) −4
В)  минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 4
Г) 4
Д) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
5.  
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 37°, ∠ AMN = 107°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.

А) 60°
Б) 30°
В) 26°
Г) 36°
Д) 53°
6.  
i

Розв’яжіть рівнян­ня  минус x минус 2 плюс 3 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка =3 левая круг­лая скоб­ка 4 минус x пра­вая круг­лая скоб­ка минус 3.

А) 2
Б) 4
В) 5,2
Г) 4,5
Д) −4,5
7.  
i

На ри­сун­ку зоб­ра­же­но графік функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , яка визна­че­на на відрізку [−4; 3]. Укажіть об­ласть зна­чень цієї функції.

А) [−1; 2]
Б) [−4; 3]
В) [−1; 1]
Г) [−2; 3]
Д) [−4; −2]
8.  
i

Спростіть вираз  дробь: чис­ли­тель: x в квад­ра­те минус 22x плюс 121, зна­ме­на­тель: x в квад­ра­те минус 11x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 121, зна­ме­на­тель: x в кубе конец дроби .

А)  дробь: чис­ли­тель: x, зна­ме­на­тель: x плюс 11 конец дроби
Б)  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 11 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
В)  дробь: чис­ли­тель: x минус 11, зна­ме­на­тель: x плюс 11 конец дроби
Г)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x минус 11 конец дроби
Д)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x плюс 11 конец дроби
9.  
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Через будь-які три точки про­хо­дить тільки одна пряма.

II. Відрізок, що з'єднує се­ре­ди­ни діаго­на­лей тра­пеції, дорівнює напіврізниці її основ.

III. Впи­сані кути, що спи­ра­ють­ся на одну й ту саму хорду кола, рівні.

А) Тільки І I
Б) Тільки II
В) Тільки III
Г) Тільки I и II
Д) Всі твер­джен­ня
10.  
i

 дробь: чис­ли­тель: 2a плюс 2, зна­ме­на­тель: 2 конец дроби =

А) a + 2
Б) 2a + 1
В) a + 1
Г) 2a
Д) a
11.  
i

Розв’яжіть си­сте­му нерівно­стей:  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше 0,169 минус x в квад­ра­те боль­ше или равно 0. конец си­сте­мы .

А)  левая круг­лая скоб­ка 1; 13 пра­вая квад­рат­ная скоб­ка
Б)  левая квад­рат­ная скоб­ка минус 13; 13 пра­вая квад­рат­ная скоб­ка
В)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 13 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 13; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
Г)  левая квад­рат­ная скоб­ка минус 13; 1 пра­вая круг­лая скоб­ка
Д)  левая квад­рат­ная скоб­ка минус 13; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1; 13 пра­вая квад­рат­ная скоб­ка
12.  
i

У пра­вильній три­кутній піраміді SABC з вер­ши­ною S бісек­три­си три­кут­ни­ка ABC пе­ре­ти­на­ють­ся в точці O. Площа три­кут­ни­ка ABC дорівнює 2; об'єм піраміди дорівнює 6. Знайдіть до­в­жи­ну відрізка OS.

А) 15
Б) 18
В) 9
Г) 3
Д) 24
13.  
i

Знайдіть корінь рівнян­ня  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в кубе = 8.

А)  левая круг­лая скоб­ка 2;2,5 пра­вая квад­рат­ная скоб­ка
Б)  левая круг­лая скоб­ка минус 1;0 пра­вая квад­рат­ная скоб­ка
В)  левая круг­лая скоб­ка 2,5;4 пра­вая квад­рат­ная скоб­ка
Г)  левая круг­лая скоб­ка 1;2 пра­вая квад­рат­ная скоб­ка
Д)  левая круг­лая скоб­ка 4;5 пра­вая круг­лая скоб­ка
14.  
i

Знайдіть площу ромба, якщо його сто­ро­ни дорівню­ють 1, а один із кутів дорівнює 150°.

А) 1
Б) 0,5
В) 2
Г) 8
Д) 4

Знайдіть похідну функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: x плюс 1, зна­ме­на­тель: 2x плюс x в кубе конец дроби .

А)  дробь: чис­ли­тель: 2x в кубе плюс 3x в квад­ра­те плюс 2, зна­ме­на­тель: левая круг­лая скоб­ка 2x плюс x в кубе пра­вая круг­лая скоб­ка в квад­ра­те конец дроби
Б)  дробь: чис­ли­тель: 2x в кубе плюс 3x в квад­ра­те плюс 2, зна­ме­на­тель: 4x плюс 2x в кубе конец дроби
В)  дробь: чис­ли­тель: 2x в кубе плюс 3x в квад­ра­те , зна­ме­на­тель: левая круг­лая скоб­ка 2x плюс x в кубе пра­вая круг­лая скоб­ка в квад­ра­те конец дроби
Г)  минус дробь: чис­ли­тель: 2x в кубе плюс 3x в квад­ра­те плюс 2, зна­ме­на­тель: левая круг­лая скоб­ка 2x плюс x в кубе пра­вая круг­лая скоб­ка в квад­ра­те конец дроби
Д)  дробь: чис­ли­тель: 2x в кубе плюс 3x в квад­ра­те плюс 2, зна­ме­на­тель: 2x плюс x в кубе конец дроби

Співвіднесіть функцію (1-3) і її вла­сти­вості (А−Д):

Функція

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2, зна­ме­на­тель: x конец дроби

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 3 в сте­пе­ни x плюс 1

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 4 x минус 1

Вла­стивість функції

А об­ластю визна­чен­ня функції є проміжок  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая круг­лая скоб­ка

Б графік функції розта­шо­ва­ний у всіх чо­ти­рьох чвер­тях ко­ор­ди­нат­ної пло­щи­ни

В графік функції має дві асимп­то­ти

Г об­ластю визна­чен­ня функції є проміжок  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції пе­ре­ти­нає вісь Oy в точке  левая круг­лая скоб­ка 0; 2 пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3
17.  
i

Уста­новіть відповідність між чис­ло­вим ви­ра­зом (1—3) та його зна­чен­ням (А—Д).

По­ча­ток ре­чен­ня

1.   16 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка

2.    левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка

3.   2 в сте­пе­ни левая круг­лая скоб­ка 3,5 пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 1,5 пра­вая круг­лая скоб­ка

Зна­чен­ня чис­ло­во­го ви­ра­зу

А    4

Б    8

В    16

Г    32

Д    64

А
Б
В
Г
Д

1

2

3
18.  
i

Уста­новіть відповідність між гео­мет­рич­ною фігурою (1—3) та радіусом кола (А—Д), впи­са­но­го в цю гео­мет­рич­ну фігуру.

Рис. 1

Рис. 2

Рис. 3

Гао­мет­рич­на фігура

1.    пра­виль­ний три­кут­ник, ви­со­та якого дорівнює  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та (рис. 1)

2.    ромб, ви­со­та якого дорівнює  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та (рис. 2)

3.    квад­рат, діаго­наль якого дорівнює  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та (рис. 3)

Радіус кола, впи­са­но­го в гео­мет­рич­ну фігуру

А    дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби

Б    1

В    дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби

Г    дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби

Д    дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби

А
Б
В
Г
Д

1

2

3
19.  
i

Гео­мет­рич­на про­гресія  левая круг­лая скоб­ка b_n пра­вая круг­лая скоб­ка за­да­на фор­му­лою n-го члена  b_n = 2 умно­жить на левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка n минус 1 пра­вая круг­лая скоб­ка . Вкажіть чет­вер­тий член цієї про­гресії.

 

Відповідь: ,.

20.  
i

У фінал пісен­но­го кон­кур­су вий­шло 4 солісти та 3 гурти. По­ряд­ко­вий номер ви­сту­пу фіналістів визна­ча­ють же­реб­ку­ван­ням. Скільки всьо­го є варіантів послідов­но­стей ви­ступів фіналістів, якщо спо­чат­ку ви­сту­па­ти­муть гурти, а після них — солісти?

Ува­жай­те, що кожен фіналіст ви­сту­па­ти­ме у фіналі лише один раз.

 

Відповідь: ,.

21.  
i

Даны век­то­ры \vec a левая круг­лая скоб­ка 3; 4 пра­вая круг­лая скоб­ка и \vec b левая круг­лая скоб­ка минус 4; минус 3 пра­вая круг­лая скоб­ка . Най­ди­те ко­си­нус угла между ними.

 

Відповідь: ,.

22.  
i

Опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра a, a боль­ше 3, такие, что урав­не­ние 4 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка a плюс 3 пра­вая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 4a минус 4=0 имеет ровно один ко­рень.

 

Відповідь: ,.