Поиск
?


Скопировать ссылку на результаты поиска



Всего: 15    1–15

Добавить в вариант

Тип Д8 B3 № 1516
i

У пря­мо­кутній си­стемі ко­ор­ди­нат у про­сторі зоб­ра­же­но пря­мо­кут­ний па­ра­ле­лепіпед ABCDA1B1C1D1, вер­ши­на B якого збігається з по­чат­ком ко­ор­ди­нат, а вер­ши­ни A, C i B на­ле­жать осям x, у і z відповідно (див. ри­су­нок). Вер­ши­на D1 має ко­ор­ди­на­ти (4; 8; 12).

До кож­но­го по­чат­ку ре­чен­ня (1—4) доберіть його закінчен­ня (А—Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

 

По­ча­ток ре­чен­ня

1.    Се­ре­ди­ною відрізка BC є точкає

2.    Век­тор \vecBA має ко­ор­ди­на­ти

3.    Точка, що на­ле­жить відрізку DD1 і відда­ле­на від точки D на 4 оди­ниці, має ко­ор­ди­на­ти

4.    Точка С1 має ко­ор­ди­на­ти

Закінчен­ня ре­чен­ня

А    (0; 8; 12)

Б    (4; 0; 0)

В    (4; 8; 8)

Г    (0; 4; 0)

Д    (4; 8; 4)

А
Б
В
Г
Д

1

2

3

4

Тип 21 № 2532
i

У пря­мо­кутній си­стемі ко­ор­ди­нат у про­сторі за­да­но век­тор  \overrightarrowAB левая круг­лая скоб­ка минус 3; 8; 1 пра­вая круг­лая скоб­ка i точку B(7; −2; 0), точка O  — по­ча­ток ко­ор­ди­нат. Об­числіть ска­ляр­ний до­бу­ток  \overrightarrowOA умно­жить на \overrightarrowAB.

Відповідь: ,.


Тип 21 № 2631
i

Даны век­то­ры \veca = левая круг­лая скоб­ка 1; 2 пра­вая круг­лая скоб­ка , \vecb = левая круг­лая скоб­ка 3; минус 6 пра­вая круг­лая скоб­ка и \vecc = левая круг­лая скоб­ка 4; минус 3 пра­вая круг­лая скоб­ка . Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка \veca плюс \vecb пра­вая круг­лая скоб­ка умно­жить на \vecc.

 

Відповідь: ,.


Тип 21 № 2632
i

Даны век­то­ры \veca левая круг­лая скоб­ка 3; минус 2 пра­вая круг­лая скоб­ка и \vecb левая круг­лая скоб­ка 0; 1 пра­вая круг­лая скоб­ка . Най­ди­те ска­ляр­ное про­из­ве­де­ние \vec a умно­жить на \vec b.

 

Відповідь: ,.


Тип 21 № 2633
i

Длины век­то­ров \vec a и \vec b равны 2 ко­рень из 3 и 5, а угол между ними равен 150°. Най­ди­те ска­ляр­ное про­из­ве­де­ние \vec a умно­жить на \vec b.

 

Відповідь: ,.


Тип 21 № 2634
i

Даны век­то­ры \vec a левая круг­лая скоб­ка 3; 4 пра­вая круг­лая скоб­ка и \vec b левая круг­лая скоб­ка минус 4; минус 3 пра­вая круг­лая скоб­ка . Най­ди­те ко­си­нус угла между ними.

 

Відповідь: ,.


Тип 21 № 2636
i

У пря­мо­кутній си­стемі ко­ор­ди­нат у про­сторі заданi век­то­ри  \veca левая круг­лая скоб­ка 2; минус 9; 3 пра­вая круг­лая скоб­ка , \vec b = минус 2\vec a. Об­числіть ска­ляр­ний до­бу­ток  \veca умно­жить на \vecb.

 

Відповідь: ,.


Тип 21 № 2637
i

У пря­мо­кутній си­стемі ко­ор­ди­нат у про­сторі за­да­но век­тор  \overrightarrowAB левая круг­лая скоб­ка минус 3; 8; 1 пра­вая круг­лая скоб­ка і точку B левая круг­лая скоб­ка 7; минус 2; 0 пра­вая круг­лая скоб­ка , точка О — по­ча­ток ко­ор­ди­нат. Об­числіть ска­ляр­ний до­бу­ток  \overrightarrowOA умно­жить на \overrightarrowAB.

 

Відповідь: ,.


Тип 21 № 2638
i

В пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат в про­стран­стве за­да­ны век­то­ры  \veca левая круг­лая скоб­ка минус 4; 2; 3 пра­вая круг­лая скоб­ка и \vecb левая круг­лая скоб­ка 3; 2; 1 пра­вая круг­лая скоб­ка . Об­числіть ска­ляр­ний до­бу­ток  \veca умно­жить на \vecb.

 

Відповідь: ,.


Тип 21 № 2639
i

В пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат в про­стран­стве задан век­тор \overrightarrowAB левая круг­лая скоб­ка 4;4;4 пра­вая круг­лая скоб­ка с на­ча­лом в точке A(−1; 2; 1). Точка C имеет ко­ор­ди­на­ты (3; −2; 2). Найти ска­ляр­ное про­из­ве­де­ние \overrightarrowAB умно­жить на \overrightarrowAC.

 

Відповідь: ,.


Тип 21 № 2640
i

В пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат в про­стран­стве за­да­ны точки А (2; –6; 9) и B (–5; 3; –7). Най­ди­те ко­ор­ди­на­ты век­то­ра \overrightarrowAB. В от­ве­те на­пи­ши­те их сумму.

 

Відповідь: ,.


Тип 21 № 2641
i

В пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат в про­стран­стве за­да­ны век­то­ры  \overrightarrowAB левая круг­лая скоб­ка 2;3;1 пра­вая круг­лая скоб­ка и  \overrightarrowCD левая круг­лая скоб­ка минус 2; минус 3;1 пра­вая круг­лая скоб­ка . Най­ди­те сумму ко­ор­ди­нат век­то­ра  \vecd = \overrightarrowAB плюс \overrightarrowCD.

 

Відповідь: ,.


Тип 21 № 2642
i

В пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат в про­стран­стве за­да­ны век­то­ры  \overrightarrowAB левая круг­лая скоб­ка 5;1; минус 6 пра­вая круг­лая скоб­ка и  \overrightarrowCD левая круг­лая скоб­ка 2; минус 7; минус 10 пра­вая круг­лая скоб­ка . Най­ди­те сумму ко­ор­ди­нат век­то­ра  \vecd = \overrightarrowAB плюс \overrightarrowCD.

 

Відповідь: ,.


Тип 21 № 2643
i

В пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат в плос­ко­сти за­да­ны век­то­ры  \veca левая круг­лая скоб­ка 6; 5; минус 2 пра­вая круг­лая скоб­ка и \vecb левая круг­лая скоб­ка 3;3; минус 7 пра­вая круг­лая скоб­ка . Ука­жи­те ко­ор­ди­на­ты век­то­ра  \vecd=3\veca минус 2\vecb. В от­ве­те за­пи­ши­те их сумму.

 

Відповідь: ,.


Тип 21 № 2644
i

В пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат в про­стран­стве задан век­тор \overrightarrowAB левая круг­лая скоб­ка 2;1;2 пра­вая круг­лая скоб­ка с на­ча­лом в точке A(−1; −2; 3). Най­ди­те абс­цис­су точки B.

 

Відповідь: ,.

Всего: 15    1–15