Вариант № 7322

При выполнении заданий с кратким ответом отметьте верный ответ или впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:00:00
1
Тип 1 № 154
i

Кисть, яка ко­шту­ва­ла 240 рублів, продається з 25% зниж­кою. При по­купці двох таких пензлів по­ку­пе­ць віддав ка­си­ру 500 рублів. Скільки рублів здачі він має от­ри­ма­ти?



2
Тип 2 № 2548
i

Після про­ве­ден­ня кон­троль­ної ро­бо­ти з ма­те­ма­ти­ки в од­но­му з класів було от­ри­ма­но такі ре­зуль­та­ти. Знайдіть се­редній бал за кон­троль­ну ро­бо­ту.

 

Оцінки (бал)2345
Кількість учнів38104


3
Тип 3 № 2568
i

Підста­вою циліндра є



4
Тип 4 № 2272
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 720 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 600 конец ар­гу­мен­та конец дроби . В от­ве­те ука­жи­те номер пра­виль­но­го ва­ри­ан­та.



5
Тип 5 № 1822
i

З точки А до кола про­ве­дені до­тичні AB і АС і січна AM, що про­хо­дить через центр кола Про. Крап­ки В, З, M ле­жать на колі (див. мал.). Знайдіть ве­ли­чи­ну кута AOB, якщо  \angle CAO = 25 гра­ду­сов.



6
Тип 6 № 266
i

Розв’яжіть рівнян­ня  минус x минус 2 плюс 3 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка =3 левая круг­лая скоб­ка 4 минус x пра­вая круг­лая скоб­ка минус 3.



7
Тип 7 № 1875
i

На ри­сун­ку зоб­ра­же­но графік функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , визна­че­ної на відрізку [−7; 7]. Ко­ри­сту­ю­чись ри­сун­ком, знайдіть f(2).



8
Тип 8 № 1903
i

Спростіть вираз  дробь: чис­ли­тель: x в квад­ра­те минус 22x плюс 121, зна­ме­на­тель: x в квад­ра­те минус 11x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 121, зна­ме­на­тель: x в кубе конец дроби .



9
Тип 9 № 1590
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I.Через будь-яку точку про­хо­дить рівно одна пряма.

II. Через будь-які дві точки можна про­ве­сти пряму.

III. Якщо відстань від точки до прямої менше 1, то й до­в­жи­на будь-якої по­хи­лої, про­ве­де­ної з цієї точки до прямої, менше 60.



10
Тип 10 № 1910
i

Спростіть вираз  дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус 5 конец дроби минус дробь: чис­ли­тель: 2x минус 5, зна­ме­на­тель: x левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка конец дроби .



11

Вкажіть номер ма­люн­ка, на якому по­ка­за­но розв’язок си­сте­ми нерівно­стей  си­сте­ма вы­ра­же­ний x\leqslant минус 1,8,1 минус 2x мень­ше 7. конец си­сте­мы .

1)

2)

3)

4)

5)



12
Тип 12 № 2247
i

Пе­ри­метр ос­но­вип ра­виль­ної чо­ти­ри­кут­ної піраміди дорівню є 72 см. Визна­чте до­в­жи­ну ви­со­ти піраміди, якщо її апо­фем а дорівню є 15 см.



13
Тип 13 № 395
i

Знайдіть корінь рівнян­ня: x= дробь: чис­ли­тель: 6x минус 15, зна­ме­на­тель: x минус 2 конец дроби .



14
Тип 14 № 2525
i

Па­ра­ле­ло­грамі ABCD: AB = ко­рень из 6 см, \angle BAD = 30 гра­ду­сов, \angle CBD = 45 гра­ду­сов (див. ри­су­нок). Об­числіть до­в­жи­ну діаго­налі BD.



15

Функція F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =5x в сте­пе­ни 4 минус 1 є первісною функці f(x). Укажіть функцію G(x) яка також є первісною функції f(x).



16

Співвіднесіть функцію (1-3) і її вла­сти­вості (А−Д):

Функція

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2, зна­ме­на­тель: x конец дроби

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 3 в сте­пе­ни x плюс 1

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 4 x минус 1

Вла­стивість функції

А об­ластю визна­чен­ня функції є проміжок  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая круг­лая скоб­ка

Б графік функції розта­шо­ва­ний у всіх чо­ти­рьох чвер­тях ко­ор­ди­нат­ної пло­щи­ни

В графік функції має дві асимп­то­ти

Г об­ластю визна­чен­ня функції є проміжок  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції пе­ре­ти­нає вісь Oy в точке  левая круг­лая скоб­ка 0; 2 пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3


17

Нехай а — довільне до­дат­не число. Уста­новіть відповідність між ви­ра­зом (1—3) та то­тож­но рівним йому ви­ра­зом (А—Д).

Вираз

1.    левая круг­лая скоб­ка 3a в кубе пра­вая круг­лая скоб­ка в квад­ра­те

2.    ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 27a в сте­пе­ни 6 конец ар­гу­мен­та

3.    дробь: чис­ли­тель: 27a в сте­пе­ни 6 , зна­ме­на­тель: 9a в кубе конец дроби

То­тож­норівний вираз

А 9a в сте­пе­ни 6

Б 9a в кубе

В 9a в сте­пе­ни 5

Г 3a в кубе

Д 3a в квад­ра­те

А
Б
В
Г
Д

1

2

3


18
Тип 18 № 1657
i

У довільній тра­пеції ABCD се­ред­ня лінія MN дорівнює 10 см, а відрізок LK, що з'єднує се­ре­ди­ни діаго­на­лей, дорівнює 3 см. Ви­со­та тра­пеції ABCD дорівнює 6 см.

Вста­новіть відповідність між відрізками (1-3) і їх до­в­жи­на­ми (А−Д).

Відрізок

1AD

2BC

3 ви­со­та тра­пеції AMND

До­в­жи­на відрізка

А 5 см

Б 7 см

В 3 см

Г 13 см

Д 6 см

А
Б
В
Г
Д

1

2

3


19
Тип 19 № 626
i

Гео­мет­рич­на про­гресія за­да­на умо­вою  b_n =160 умно­жить на 3 в сте­пе­ни n . Знайдіть суму пер­ших її 4 членів.

 

Відповідь: ,.



20
Тип 20 № 2623
i

У ма­га­зині в на­яв­ності є 10 видів тортів та 15 видів пачок пе­чи­ва. Скільки всьо­го є спо­собів ви­бо­ру в цьому ма­га­зині або од­но­го торта, або трьох різних пачок пе­чи­ва для свят­ко­во­го ве­чо­ра?

 

Відповідь: ,.



21
Тип 21 № 2643
i

В пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат в плос­ко­сти за­да­ны век­то­ры  \veca левая круг­лая скоб­ка 6; 5; минус 2 пра­вая круг­лая скоб­ка и \vecb левая круг­лая скоб­ка 3;3; минус 7 пра­вая круг­лая скоб­ка . Ука­жи­те ко­ор­ди­на­ты век­то­ра  \vecd=3\veca минус 2\vecb. В от­ве­те за­пи­ши­те их сумму.

 

Відповідь: ,.



22
Тип 22 № 2439
i

При каких зна­че­ни­ях па­ра­мет­ра не­ра­вен­ство |x минус 1| мень­ше или равно минус a в квад­ра­те имеет един­ствен­ное ре­ше­ние.

 

Відповідь: ,.


Завершить работу, свериться с ответами, увидеть решения.