Поиск
?


Скопировать ссылку на результаты поиска



Всего: 16    1–16

Добавить в вариант

Тип 9 № 1485
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Нав­ко­ло довільно­го ромба за­вжди можна опи­са­ти коло.

II. Нав­ко­ло довільної тра­пеції за­вжди можна опи­са­ти коло.

III. Нав­ко­ло довільно­го пря­мо­кут­ни­ка за­вжди можна опи­са­ти коло.

А) лише I та III
Б) лише I
В) лише III
Г) I, II та III
Д) лише II та III

Тип 9 № 1486
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

І. Бічні сто­ро­ни будь-якої тра­пеції па­ра­лельні.

ІІ. Сума кутів, при­лег­лих до бічної сто­ро­ни будь-якої тра­пеції, дорівнює 180°.

ІІІ. Сума про­ти­леж­них кутів будь-якої тра­пеції дорівнює 180°.

А) лише І
Б) лише ІІ
В) лише І й ІІ
Г) лише ІI й ІІІ
Д) І, ІІ й ІІІ

Тип 18 № 1539
i

Ос­но­ви ВС й AD рівнобічної тра­пеції ABCD дорівню­ють 7 см і 25 см відповідно. Діаго­наль тра­пеції BD пер­пен­ди­ку­ляр­на до бічної сто­ро­ни АВ. До кож­но­го по­чат­ку ре­чен­ня (1—3) доберіть його закінчен­ня (А—Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

 

По­ча­ток ре­чен­ня

1.    Се­ред­ня лінія тра­пеції дорівнює

2.    Про­екція сто­ро­ни AB на пряму AD дорівнює

3.    Ви­со­та тра­пеції дорівнює

Закінчен­ня ре­чен­ня

А    9 см

Б    12 см

В    15 см

Г    16 см

Д    18 см

А
Б
В
Г
Д

1

2

3

Тип 18 № 1543
i

Бічні сто­ро­ни АВ та СD пря­мо­кут­ної тра­пеції АВСD дорівню­ють 6 см і 10 см відповідно. Менша діаго­наль тра­пеції ле­жить на бісек­трисі її пря­мо­го кута (див. ри­су­нок). Уста­новіть відповідність між відрізком (1−3) та його до­в­жи­ною (А−Д).

Відрізок

1.    ос­но­ва ВС

2.    про­екція сто­ро­ни СD на пряму АD

3.    се­ред­ня лінія тра­пеції АВСD

До­в­жи­на відрізка

А    6 см

Б    8 см

В   10 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см

Г    10 см

Д    14 см

А
Б
В
Г
Д

1

2

3

Тип 18 № 1547
i

На більшій основі АО рівнобічної тра­пеції ABCD вибра­но точки К та М так, що ВК||CD, MC||AB (див. ри­су­нок). Відрізки ВК та СМ пе­ре­ти­на­ють­ся в точці О, ВО : ОК = 2 : 3. Пе­ри­метр чо­ти­ри­кут­ни­ка ABCM дорівнює 84, ВС = 12. Уста­новіть відповідність між відрізком (1−3) та його до­в­жи­ною (А−Д).

Відрізок

1.    AB

2.    MK

3.    сред­ня лінія тра­пецї ABCD

До­в­жи­на відрізка

А    21

Б    30

В    18

Г    27

Д    54

А
Б
В
Г
Д

1

2

3

Тип 18 № 1559
i

Квад­рат АВСD й пря­мо­кут­на тра­пеція ВМNС ле­жать в одній пло­щині (див. ри­су­нок). Площа кожної із цих фігур дорівнює 36 см2, АМ = 15 см. Уста­новіть відповідність між відрізком (1−3) і його до­в­жи­ною (А−Д).

Відрізок

1.    сто­ро­на квад­ра­та АВСD

2.    ви­со­та тра­пецiї BMNC

3.    менша ос­но­ва тра­пецiї BMNC

До­в­жи­на відрізка

А    2 см

Б    3см

В    4см

Г    6 см

Д    9см

А
Б
В
Г
Д

1

2

3

Тип 18 № 1566
i

У пря­мо­кут­ник ABCD впи­са­но рівно­бед­ре­ний три­кут­ник AKD так, як по­ка­за­но на ри­сун­ку. АD = 12 см, АК = 10 см. До кож­но­го по­чат­ку ре­чен­ня (1−3) доберіть його закінчен­ня (А−Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1.    До­в­жи­на сто­ро­ни АВ дорівнює

2.    Радіус кола, опи­са­но­го нав­ко­ло пря­мо­кут­ни­ка АВСD, дорівнює

3.    До­в­жи­на се­ред­ньої лінії тра­пеції АВКD дорівнює

Закінчен­ня ре­чен­ня

А   2 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см

Б    8 см

В    9 см

Г   4 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см

Д    4 см

А
Б
В
Г
Д

1

2

3

Тип 9 № 1583
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Через будь-які три точки про­хо­дить тільки одна пряма.

II. Відрізок, що з'єднує се­ре­ди­ни діаго­на­лей тра­пеції, дорівнює напіврізниці її основ.

III. Впи­сані кути, що спи­ра­ють­ся на одну й ту саму хорду кола, рівні.

А) Тільки І I
Б) Тільки II
В) Тільки III
Г) Тільки I и II
Д) Всі твер­джен­ня

Тип 18 № 1657
i

У довільній тра­пеції ABCD се­ред­ня лінія MN дорівнює 10 см, а відрізок LK, що з'єднує се­ре­ди­ни діаго­на­лей, дорівнює 3 см. Ви­со­та тра­пеції ABCD дорівнює 6 см.

Вста­новіть відповідність між відрізками (1-3) і їх до­в­жи­на­ми (А−Д).

Відрізок

1AD

2BC

3 ви­со­та тра­пеції AMND

До­в­жи­на відрізка

А 5 см

Б 7 см

В 3 см

Г 13 см

Д 6 см

А
Б
В
Г
Д

1

2

3

Тип 5 № 1810
i

На ри­сун­ку зоб­ра­же­но тра­пецію ABCD. Визна­чте гра­дус­ну міру кута BCD, якщо \angle ADB=35 гра­ду­сов, \angle BDC= 20°.

А) 125°
Б) 165°
В) 155°
Г) 145°
Д) 140°

Тип 5 № 1811
i

На ри­сун­ку зоб­ра­же­но па­ра­ле­ло­грам ABCD, точка В ле­жить на прямій МС. Визна­чте гра­дус­ну міру кута CDA, якщо \angleMBA = 25 гра­ду­сов.

А) 115°
Б) 65°
В) 175°
Г) 165°
Д) 155°

Тип 14 № 2226
i

Ос­но­ва тра­пеції дорівнює 13, ви­со­та дорівнює 5, а площа дорівнює 50. Знайдіть другу ос­но­ву тра­пеції.

А) 13
Б) 33
В) 20
Г) 16
Д) 7

Тип 14 № 2230
i

Се­ред­ня лінія та ви­со­та тра­пеції дорівнює відповідно 3 і 2. Знайдіть площу тра­пеції.

А) 12
Б) 10
В) 4
Г) 6
Д) 18

Тип 14 № 2479
i

Тра­пе­ция ABCD с ос­но­ва­ни­я­ми AD и BC опи­са­на около окруж­но­сти, AB  =  11, BC  =  6, CD  =  9. Най­ди­те AD.

А) 7
Б) 15
В) 9
Г) 14
Д) 8

Тип 14 № 2480
i

Ос­но­ва­ния тра­пе­ции равны 4 и 10. Най­ди­те боль­ший из от­рез­ков, на ко­то­рые делит сред­нюю линию этой тра­пе­ции одна из её диа­го­на­лей.

А) 3
Б) 6
В) 5
Г) 2
Д) 7

Тип 18 № 2529
i

Квад­рат АВСD та пря­мо­кут­на тра­пеція ВMNС ле­жать в одній пло­щині (див. ри­су­нок). Площа кожної із цих фігур дорівнює 36 см2, AM  =  15 см. Уста­новіть відповідність між відрізком (1–3) та його до­в­жи­ною (А–Д).

Відрізок

1) сто­ро­на квад­ра­та АВСD

2) ви­со­та тра­пеції ВMNС

3) менша ос­но­ва тра­пеції ВMNС

До­в­жи­на відрізка, см

А) 2

Б) 3

В) 4

Г) 6

Д) 9

А
Б
В
Г
Д

1

2

3
Всего: 16    1–16