Вариант № 8966

При выполнении заданий с кратким ответом отметьте верный ответ или впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:00:00
1
Тип 1 № 1418
i

У ко­робці ле­жать тістеч­ка двох видів: бісквіти та бізе. Яке з на­ве­де­них чисел може бути кількістю тісте­чок у ко­робці, якщо бісквітів у 5 разів більше, ніж бізе?



2
Тип 2 № 2537
i

Се­редній вік оди­на­дця­ти хокеїстів ко­ман­ди ста­но­вить 22 роки. Під час міжсе­зон­ня один з гравців по­ки­нув ко­ман­ду, після чого се­редній вік хокеїстів, які за­ли­ши­ли­ся в ко­манді, став дорівнює 21 рік. Скільки років хокеїстові, який по­ки­нув ко­ман­ду?



3
Тип 3 № 2557
i

Скільки бічних гра­ней у три­кут­ної піраміди?



4
Тип 4 № 2190
i

 левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка =



5
Тип 5 № 521
i

Три­кут­ник ABC - рівно­бед­ре­ний з ос­но­вою BC. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BCA три­кут­ни­ка ABC.



6
Тип 6 № 264
i

Розв’яжіть рівнян­ня  3x плюс 5 плюс левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка плюс 4.



7
Тип 7 № 1460
i

На ри­сун­ку зоб­ра­же­но графік функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , визна­че­ної на відрізку [−7; 7]. Ко­ри­сту­ю­чись ри­сун­ком, знайдіть f(2).



8
Тип 8 № 556
i

Спростіть вираз  дробь: чис­ли­тель: x в квад­ра­те минус 8x плюс 16, зна­ме­на­тель: x в квад­ра­те минус 4x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 16, зна­ме­на­тель: x в кубе конец дроби .



9
Тип 9 № 1489
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Діаго­налі будь-якого па­ра­ле­ло­гра­ма рівні.

II. Про­ти­лежні кути будь-якого па­ра­ле­ло­гра­ма рівні.

III. Відстані від точки пе­ре­ти­ну діаго­на­лей будь-якого па­ра­ле­ло­гра­ма до його про­ти­леж­них сторін рівні.



10
Тип 10 № 568
i

Ско­ротіть дріб  дробь: чис­ли­тель: x в квад­ра­те минус 36, зна­ме­на­тель: 5x в квад­ра­те минус 29x минус 6 конец дроби .



11
Тип 11 № 1463
i

Розв’яжіть си­сте­му нерівно­стей:  си­сте­ма вы­ра­же­ний 2x в квад­ра­те минус 7x плюс 5 мень­ше или равно 0,2 минус x боль­ше 0. конец си­сте­мы .



12
Тип 12 № 2262
i

Сто­ро­на ос­но­ви пра­виль­ної чо­ти­ри­кут­ної піраміди дорівнює 6 см, апо­фе­ма — 7 см. Визна­чте площу повної по­верхні цієї піраміди.



13
Тип 13 № 452
i

Знайдіть корінь рівнян­ня  2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 8 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = 4.



14
Тип 14 № 2222
i

Бісек­три­са кута A пря­мо­кут­ни­ка ABCD пе­ре­ти­нає сто­ро­ну ВС в точці K. Об­числіть площу чо­ти­ри­кут­ни­ка AKCD, якщо BK=KC=8 см.



15

Яка з на­ве­де­них функцiй є первiсною для функцiї f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка ?



16

Увідповідніть функцію (1–3) та її вла­стивість (А–Д).

Функцiя

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 0,2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2 синус x

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: |x| конец ар­гу­мен­та

Вла­стивість функції

А функція парна

Б об­ластю зна­чень функції є мно­жи­на [−1; 1].

В об­ластю зна­чень функції є проміжок [−2; 2].

Г функція спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції має лише дві точки пе­ре­ти­ну з осями ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3


17

Уста­новіть відповідність між ви­ра­зом (1−3) та то­тож­но рівним йому ви­ра­зом (А−Д), якщо а — довільне від’ємне число.

Вираз

1.    a0

2.     |a| плюс a

3.    a ло­га­рифм по ос­но­ва­нию 2 2 в сте­пе­ни a

То­тож­но рівний вираз

А    0

Б    2a

В    a2

Г    1

Д    −2a

А
Б
В
Г
Д

1

2

3


18
Тип 18 № 1528
i

На кож­но­му з ри­сунків зоб­ра­же­но коло з цен­тром у точці О та хорду АВ. Кут ACB і ADB — впи­сані кути, які спи­ра­ють­ся на хорду АВ. Уста­новіть відповідність між впи­са­ним кутом АСВ, зоб­ра­же­ним на ри­сун­ках (1−3), та його гра­дус­ною мірою (А−Д).

Ри­сун­ки

1.

2.

3.

Гра­дус­на мiра впи­са­но­го кута ACB

А    100°

Б    90°

В    80°

Г    60°

Д    50°

А
Б
В
Г
Д

1

2

3


19
Тип 19 № 629
i

Ви­пи­са­но кілька послідов­них членів гео­мет­рич­ної про­гресії: …; 150; x ; 6; 1,2; … Знайдіть член про­гресії, по­зна­че­ний літерою x.

 

Відповідь: ,.



20
Тип 20 № 2611
i

Сту­ден­ти однієї з груп під час сесії по­винні скла­сти п'ять іспитів. Де­ка­ну потрібно при­зна­чи­ти скла­дан­ня цих іспитів на п’ять визна­че­них дат. Скільки всьо­го існує різних варіантів роз­кла­ду іспитів для цієї групи?

 

Відповідь: ,.



21
Тип 21 № 2632
i

Даны век­то­ры \veca левая круг­лая скоб­ка 3; минус 2 пра­вая круг­лая скоб­ка и \vecb левая круг­лая скоб­ка 0; 1 пра­вая круг­лая скоб­ка . Най­ди­те ска­ляр­ное про­из­ве­де­ние \vec a умно­жить на \vec b.

 

Відповідь: ,.



22
Тип 22 № 2436
i

Опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра a, a мень­ше минус 12, такие, что урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те плюс 6x плюс 8= ко­рень из: на­ча­ло ар­гу­мен­та: a минус 3x конец ар­гу­мен­та имеет на  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0 пра­вая круг­лая скоб­ка един­ствен­ное ре­ше­ние.

 

Відповідь: ,.


Завершить работу, свериться с ответами, увидеть решения.