Вариант № 8295

При выполнении заданий с кратким ответом отметьте верный ответ или впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:00:00
1
Тип 1 № 155
i

Площа зе­мель се­лянсь­ко­го гос­по­дар­ства, відве­де­на під по­сад­ку сільсь­ко­гос­по­дарсь­ких куль­тур, ста­но­вить 24 га та роз­поділена між зер­но­ви­ми та ово­че­ви­ми куль­ту­ра­ми щодо 5:3. Скільки гек­тарів зай­ма­ють ово­чеві куль­ту­ри?



2
Тип 2 № 2540
i

Зі став­ка ви­ло­ви­ли 10 щук. П'ять щук ва­жи­ли по 0,85 кг, чо­ти­ри по 0,36 кг, одна 0,91 кг. Об­числіть се­ред­ню масу щук. Відповідь округ­ли­те до сотих.



3
Тип 3 № 2679
i

Точки A і B ле­жать на колі радіуса 16. Укажіть найбільше мож­ли­ве зна­чен­ня до­в­жи­ни відрізка AB.



4
Тип 4 № 2191
i

Об­числіть  дробь: чис­ли­тель: 5 в сте­пе­ни 4 умно­жить на 2 в сте­пе­ни 4 , зна­ме­на­тель: 20 в кубе конец дроби .



5
Тип 5 № 1771
i

На ри­сун­ку зоб­ра­же­но прямі m і n, що пе­ре­ти­на­ють­ся. Визна­чте гра­дус­ну міру кута γ, якщо  альфа плюс бета =50 гра­ду­сов .



6
Тип 6 № 2205
i

Знайдіть корінь рівнян­ня 2 плюс 9x=4x плюс 3.



7
Тип 7 № 1454
i

На ри­сун­ку зоб­ра­же­но графік функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , визна­че­ної на проміжку [−2; 4]. Цей графік пе­ре­ти­нає вісь у в одній із за­зна­че­них точок. Укажіть цю точку.



8
Тип 8 № 1904
i

Спростіть вираз  дробь: чис­ли­тель: x в квад­ра­те минус 8x плюс 16, зна­ме­на­тель: x в квад­ра­те минус 4x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 16, зна­ме­на­тель: x в кубе конец дроби .



9
Тип 9 № 1591
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I.Через будь-яку точку про­хо­дить не менше однієї прямої.

II. Якщо дві прямі пер­пен­ди­ку­лярні до третьої прямої, то ці дві прямі па­ра­лельні.

III. Пряма немає осей си­метрії.



10
Тип 10 № 1718
i

x плюс 2 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка =



11
Тип 11 № 1473
i

Розв’яжіть си­сте­му нерівно­стей:  си­сте­ма вы­ра­же­ний 3 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка мень­ше или равно 2x плюс 4,4x минус 3 боль­ше или равно 13. конец си­сте­мы .



12
Тип 12 № 2248
i

Визна­чте площу бічної по­верхні пра­виль­ної три­кут­ної піраміди, до­в­жи­на сто­ро­ни ос­но­ви якої дорівнює 10 см, а до­в­жи­на бічного ребра — 13 см.



13
Тип 13 № 396
i

Знайдіть корінь рівнян­ня: 9 в сте­пе­ни левая круг­лая скоб­ка минус 5 плюс x пра­вая круг­лая скоб­ка =729.



14
Тип 14 № 2669
i

На ри­сун­ку зоб­ра­же­но пря­мо­кут­ник ABCD. Точка K ле­жить на сто­роні AD. Визна­чте до­в­жи­ну сто­ро­ни AD, якщо BK = d, \angle AKB = альфа , \angle KCD = бета .



15

Функція F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =5x в сте­пе­ни 4 минус 1 є первісною функці f(x). Укажіть функцію G(x) яка також є первісною функції f(x).



16
Тип 16 № 2527
i

До кож­но­го по­чат­ку ре­чен­ня (1–3) доберіть його закінчен­ня (А–Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1) Функція y = ко­рень из: на­ча­ло ар­гу­мен­та: x минус 4 конец ар­гу­мен­та

2) Функція y  =  2

3) Функція y = x в кубе

Закінчен­ня ре­чен­ня

А) спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая круг­лая скоб­ка

Б) не визна­че­на в точці x  =  1

В) на­бу­ває від’ємного зна­чен­ня в точці x  =  8

Г) на­бу­ває до­дат­но­го зна­чен­ня в точці x  =  −3

Д) є не­пар­ною

А
Б
В
Г
Д

1

2

3


17

Нехай m і n — довільні дійсні числа, a — довільне до­дат­не число, a не равно 1. До кож­но­го по­чат­ку ре­чен­ня (1−3) доберіть його закінчен­ня (А−Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1.    Якщо a в сте­пе­ни m умно­жить на a в сте­пе­ни n =a в сте­пе­ни 4 , то

2.    Якщо  ко­рень 8 сте­пе­ни из: на­ча­ло ар­гу­мен­та: a в сте­пе­ни m конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: a в сте­пе­ни n , конец ар­гу­мен­та то

3.    Якщо  дробь: чис­ли­тель: a в сте­пе­ни n , зна­ме­на­тель: a в сте­пе­ни m конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: a в сте­пе­ни 4 конец дроби , то

Закінчен­ня ре­чен­ня

А   m плюс n=4

Б   m минус n=4

В   mn=4

Г   m=4n

Д   m=8n

А
Б
В
Г
Д

1

2

3


18
Тип 18 № 2529
i

Квад­рат АВСD та пря­мо­кут­на тра­пеція ВMNС ле­жать в одній пло­щині (див. ри­су­нок). Площа кожної із цих фігур дорівнює 36 см2, AM  =  15 см. Уста­новіть відповідність між відрізком (1–3) та його до­в­жи­ною (А–Д).

Відрізок

1) сто­ро­на квад­ра­та АВСD

2) ви­со­та тра­пеції ВMNС

3) менша ос­но­ва тра­пеції ВMNС

До­в­жи­на відрізка, см

А) 2

Б) 3

В) 4

Г) 6

Д) 9

А
Б
В
Г
Д

1

2

3


19
Тип 19 № 626
i

Гео­мет­рич­на про­гресія за­да­на умо­вою  b_n =160 умно­жить на 3 в сте­пе­ни n . Знайдіть суму пер­ших її 4 членів.

 

Відповідь: ,.



20
Тип 20 № 2697
i

Пе­ре­мож­цю олімпіади за­пла­но­ва­но по­да­ру­ва­ти ком­плект із 5 книг, у якому 2 збірники олімпіадних задач та 3 на­у­ко­во-по­пу­лярні книги. Скільки всьо­го варіантів фор­му­ван­ня та­ко­го ком­плек­ту книг, якщо є 8 різних збірників та 10 різних на­у­ко­во-по­пу­ляр­них книг?

 

Відповідь: ,.



21
Тип 21 № 2644
i

В пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат в про­стран­стве задан век­тор \overrightarrowAB левая круг­лая скоб­ка 2;1;2 пра­вая круг­лая скоб­ка с на­ча­лом в точке A(−1; −2; 3). Най­ди­те абс­цис­су точки B.

 

Відповідь: ,.



22
Тип 22 № 2420
i

Опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра a, a мень­ше 2, такие, что урав­не­ние 64 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка a минус 4 пра­вая круг­лая скоб­ка 8 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 4 минус 2a=0 имеет ровно один ко­рень.

 

Відповідь: ,.


Завершить работу, свериться с ответами, увидеть решения.