Поиск
?


Скопировать ссылку на результаты поиска



Всего: 5    1–5

Добавить в вариант

Тип Д8 B3 № 1479
i

Точка A на­ле­жить пло­щинi α. Яки з на­ве­де­них твер­джнь є пра­виль­ны­ми?

I. Через точку A можна про­ве­сти пряму, пер­пен­ди­ку­ляр­ну до пло­щи­ни α.

II. Через точку A можна про­ве­сти пло­щи­ну, пер­пен­ди­ку­ляр­ну до пло­щи­ни α.

III. Через точку A можна про­ве­сти пло­щи­ну, па­ра­лель­ну пло­щи­ни α.


Пло­щи­ни α i β па­ра­лельнi. Якi з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Iснує пряма, що ле­жить i в пло­щинi α i в пло­щи­ни β.

II. Якщо пряма пер­пен­ди­ку­ляр­на до пло­щи­ни α, то вона пер­пен­ди­ку­ляр­на до пло­щи­ни β.

III. Якщо пряма ле­жить у пло­щинi α, то вона па­ра­лель­на будь-якiй прямiй у пло­щинi β.


Тип Д8 B3 № 1597
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Чи па­ра­лельні прямі a та b, якщо ці прямі не мають спільних точок.

II. Чи па­ра­лельні прямі a та b, якщо ці прямі ле­жать у па­ра­лель­них пло­щи­нах?

III. Чи па­ра­лельні прямі a та b, якщо відомо, що прямі a та c па­ра­лельні, прямі b та c па­ра­лельні?


Тип Д8 B3 № 1607
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I.  Чи вірно, що якщо дві прямі, що ле­жать у пло­щині α та па­ра­лельні пло­щині β, то пло­щи­ни α та β па­ра­лельні?

II.  Чи вірно, що якщо пряма m пе­ре­ти­нає пло­щи­ну α, то через неї не можна про­ве­сти пло­щи­ну па­ра­лель­ну пло­щині α?

III.  Чи пра­виль­но, якщо діаго­наль і сто­ро­на плос­ко­го чо­ти­ри­кут­ни­ка па­ра­лельні пло­щині α, то й пло­щи­на чо­ти­ри­кут­ни­ка па­ра­лель­на пло­щині α?


Тип Д8 B3 № 1611
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I.Чи вірно, що дві пло­щи­ни, пер­пен­ди­ку­лярні до третьої, па­ра­лельні?

II. Чи вірно, що пло­щи­на, пер­пен­ди­ку­ляр­на до однієї з па­ра­лель­них пло­щин, пер­пен­ди­ку­ляр­на до другої пло­щи­ни?

III. Чи вірно, що якщо дві пло­щи­ни, пер­пен­ди­ку­лярні до третьої пло­щи­ни, пе­ре­ти­на­ють­ся, то пряма їх пе­ре­ти­ну пер­пен­ди­ку­ляр­на до третьої пло­щи­ни?

Всего: 5    1–5