Поиск
?


Скопировать ссылку на результаты поиска



Всего: 7    1–7

Добавить в вариант

Тип 16 № 1431
i

Увідповідніть функцію (1–3) та її вла­стивість (А–Д).

Функцiя

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = тан­генс x

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2x плюс 1

Вла­стивість функції

А функція не­пар­на

Б об­ластю зна­чень функції є мно­жи­на  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

В об­ластю визна­чен­ня функції є проміжок  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Г функція спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції має лише дві точки пе­ре­ти­ну з осями ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3

На ри­сун­ку зоб­ра­же­но графік функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , визна­че­ної на відрізку [−3; 4]. Уста­новіть відповідність між функцією (1–3) та абс­ци­сою (А—Д) точки пе­ре­ти­ну графіка цієї функції з графіком функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка .

 

Функція

1.   y=x плюс 1

2.   y= дробь: чис­ли­тель: 4, зна­ме­на­тель: x конец дроби

3.   y= левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x

Абс­ци­са точки пе­ре­ти­ну

А   x= минус 3

Б   x= минус 1

В   x=0

Г   x=1

Д   x=3

А
Б
В
Г
Д

1

2

3

Тип 16 № 1521
i

Уста­новіть відповідність між функцією (1−3) та пря­мою, зоб­ра­же­ною на ри­сун­ку (А−Д), яка не має з графiком цiєї функцiї жодної спiльної точки.

Функція

1.   y= тан­генс x

2.   y = ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 2

3.   y = левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

Ескіз графіка функції

А

Б

В

Г

Д

А
Б
В
Г
Д

1

2

3

На ри­сун­ках (1−3) зоб­ра­же­но графіки функцій, кожна з яких визна­че­на на проміжку [−3; 3]. Уста­новіть відповідність між графіком (1−3) функції та вла­стивістю (А−Д) цієї функції.

Графік функції

1.

2.

3.

Гра­дус­на мiра впи­са­но­го кута ACB

А    графік функції двічі пе­ре­ти­нає графік функції y = 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

Б    графік функції є фраг­мен­том графіка функції y = 1 минус x

В    графік функції є фраг­мен­том графіка функції y = 1 плюс x

Г    функція є не­пар­ною

Д    функція зрос­тає на проміжку [0; 3]

А
Б
В
Г
Д

1

2

3

Увідповідніть функцію (1–3) та її вла­стивість (А–Д).

Функцiя

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 0,2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2 синус x

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: |x| конец ар­гу­мен­та

Вла­стивість функції

А функція парна

Б об­ластю зна­чень функції є мно­жи­на [−1; 1].

В об­ластю зна­чень функції є проміжок [−2; 2].

Г функція спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції має лише дві точки пе­ре­ти­ну з осями ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3

Тип 16 № 1640
i

Увідповідніть функцію (1-3) та її вла­сти­вості (А-Д):

Функ­ция

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 3x плюс 8

Свой­ство функ­ции

А графік функції про­хо­дить через точку з ко­ор­ди­на­та­ми (0;1)

Б функція спадає на всій об­ласті визна­чен­ня

В функ­ция яв­ля­ет­ся пе­ри­о­ди­че­ской

Г графіком функції є пряма

Д функція спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая квад­рат­ная скоб­ка

А
Б
В
Г
Д

1

2

3

Співвіднесіть функцію (1-3) і її вла­сти­вості (А−Д):

Функція

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2, зна­ме­на­тель: x конец дроби

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 3 в сте­пе­ни x плюс 1

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 4 x минус 1

Вла­стивість функції

А об­ластю визна­чен­ня функції є проміжок  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая круг­лая скоб­ка

Б графік функції розта­шо­ва­ний у всіх чо­ти­рьох чвер­тях ко­ор­ди­нат­ної пло­щи­ни

В графік функції має дві асимп­то­ти

Г об­ластю визна­чен­ня функції є проміжок  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції пе­ре­ти­нає вісь Oy в точке  левая круг­лая скоб­ка 0; 2 пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3
Всего: 7    1–7