Заголовок:
Комментарий:
Готово, можно копировать.
СКЛАДУ НМТ — математика
Вариант № 8592
1.  
i

Спор­тив­ний ма­га­зин про­во­дить акцію: «Будь-яка фут­бол­ка за ціною 300 рублів. Ку­пу­ю­чи дві фут­бол­ки — зниж­ка на другу 60%». Скільки рублів до­ве­деть­ся за­пла­ти­ти за по­куп­ку двох фут­бо­лок?

А) 420
Б) 360
В) 120
Г) 410
Д) 430
2.  
i

Мо­то­цикліст пер­шо­го дня по­до­рожі проїхав 320 км, дру­го­го дня  — 360 км, третьо­го дня  — 400 км, а чет­вер­тий  — 208 км. Яку відстань у се­ред­ньо­му за день проїжджав ав­то­мобіліст?

А) 322 км
Б) 321 км
В) 324 км
Г) 330 км
Д) 315 км
3.  
i

Що є ос­но­вою пра­виль­ної чо­ти­ри­кут­ної піраміди?

А) квад­рат
Б) три­кут­ник
В) пря­мо­кут­ник
Г) па­ра­ле­ло­грам
Д) тра­пеція
4.  
i

Об­числіть  дробь: чис­ли­тель: 5 в сте­пе­ни 4 умно­жить на 2 в сте­пе­ни 4 , зна­ме­на­тель: 20 в кубе конец дроби .

А)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби
Б)  дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 10
В)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
Г)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 20 конец дроби
Д) 10
5.  
i

На ма­люн­ку зоб­ра­жені роз­гор­ну­тий кут AOM та про­мені OB та OC. Відомо, що ∠ AOC = 144 °, ∠ BOM = 136 °. Знайдіть ве­ли­чи­ну кута BOC.

А) 44°
Б) 36°
В) 100°
Г) 54°
Д) 46°
6.  
i

Розв’яжіть рівнян­ня: 3 минус дробь: чис­ли­тель: x, зна­ме­на­тель: 7 конец дроби = дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби .

А) 6,9
Б) −6
В) 3
Г) 6,3
Д) 7,1
7.  
i

Графік функції, визна­че­ної на проміжку [−5; 4], про­хо­дить через одну з на­ве­де­них точок (див. ри­су­нок). Укажіть цю точку.

А) (−5; −2)
Б) (1; −3)
В) (−1; 4)
Г) (−3; 1)
Д) (0; −2)
8.  
i

Спростіть вираз  дробь: чис­ли­тель: x в квад­ра­те плюс 4x плюс 4, зна­ме­на­тель: x в квад­ра­те плюс 2x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 4, зна­ме­на­тель: x в кубе конец дроби .

А)  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
Б)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x минус 2 конец дроби
В)  дробь: чис­ли­тель: x плюс 2, зна­ме­на­тель: x минус 2 конец дроби
Г)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x плюс 2 конец дроби
Д)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: 2 минус x конец дроби

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Якщо два кути од­но­го три­кут­ни­ка дорівню­ють двом кутам іншого три­кут­ни­ка, то такі три­кут­ни­ки подібні.

II. Якщо два кути три­кут­ни­ка рівні, то рівні також про­ти­лежні їм сто­ро­ни.

III. Якщо діаго­налі ромба дорівню­ють 3 і 4, то його площа дорівнює 6.

А) Тільки I
Б) Тільки III
В) I та III
Г) II та III
Д) I, II та III
10.  
i

Ре­зуль­тат спро­щен­ня ви­ра­зу  дробь: чис­ли­тель: a в квад­ра­те плюс 5a, зна­ме­на­тель: a плюс 3 конец дроби плюс дробь: чис­ли­тель: 6a, зна­ме­на­тель: a в квад­ра­те плюс 3a конец дроби має вид:

А) a минус 2
Б)  дробь: чис­ли­тель: левая круг­лая скоб­ка a минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус 3 пра­вая круг­лая скоб­ка , зна­ме­на­тель: a плюс 3 конец дроби
В)  дробь: чис­ли­тель: a в квад­ра­те плюс 11a, зна­ме­на­тель: a в квад­ра­те плюс 4a плюс 3 конец дроби
Г)  дробь: чис­ли­тель: a в квад­ра­те плюс 8a плюс 33, зна­ме­на­тель: 3 левая круг­лая скоб­ка a плюс 3 пра­вая круг­лая скоб­ка конец дроби
Д) a плюс 2
11.  
i

Розв'яжіть си­сте­му нерівно­стей  си­сте­ма вы­ра­же­ний 6 боль­ше 2x,7x минус 28 мень­ше или равно 0. конец си­сте­мы .

А)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 3 пра­вая круг­лая скоб­ка
Б)  левая круг­лая скоб­ка 3; 4 пра­вая квад­рат­ная скоб­ка
В)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая круг­лая скоб­ка
Г)  левая круг­лая скоб­ка минус 3; 4 пра­вая квад­рат­ная скоб­ка
Д)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 4 пра­вая квад­рат­ная скоб­ка
12.  
i

Знайдіть бічне ребро пра­виль­ної чо­ти­ри­кут­ної приз­ми, якщо сто­ро­на її ос­но­ви дорівнює 20, а площа по­верхні дорівнює 1760.

А) 24
Б) 12
В) 6
Г) 36
Д) 3
13.  
i

Знайдіть корінь рівнян­ня: x в квад­ра­те минус 17x плюс 72=0.

А)  левая квад­рат­ная скоб­ка 10;11 пра­вая круг­лая скоб­ка
Б)  левая круг­лая скоб­ка 9;10 пра­вая круг­лая скоб­ка
В)  левая круг­лая скоб­ка 3;6 пра­вая квад­рат­ная скоб­ка
Г)  левая круг­лая скоб­ка 6;8 пра­вая квад­рат­ная скоб­ка
Д)  левая квад­рат­ная скоб­ка 8;9 пра­вая квад­рат­ная скоб­ка
14.  
i

До­в­жи­на сто­ро­ни ромба дорівнює 12 см. Визна­чте до­в­жи­ну більшої діаго­налі цього ромба, якщо його тупий кут дорівнює 120°.

А) 6 ко­рень из 3 см
Б) 8 ко­рень из 3 см
В) 12 см
Г) 12 ко­рень из 3 см
Д) 24 см
15.  
i

На ма­люн­ку зоб­ра­же­но графік деякої функції y  =  f(x) (два про­мені із за­галь­ною по­чат­ко­вою точ­кою). Ко­ри­сту­ю­чись ри­сун­ком, об­числіть F(8) − F(2), де F(x) — одна з пер­шо­ряд­них функцій f(x).

А) 6
Б) 7
В) 8
Г) 9
Д) 10
16.  
i

Увідповідніть функцію (1–3) та її вла­стивість (А–Д).

Функцiя

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = тан­генс x

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2x плюс 1

Вла­стивість функції

А функція не­пар­на

Б об­ластю зна­чень функції є мно­жи­на  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

В об­ластю визна­чен­ня функції є проміжок  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Г функція спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції має лише дві точки пе­ре­ти­ну з осями ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3
17.  
i

Нехай m і n — довільні дійсні числа, a — довільне до­дат­не число, a не равно 1. До кож­но­го по­чат­ку ре­чен­ня (1−3) доберіть його закінчен­ня (А−Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1.    Якщо a в сте­пе­ни m умно­жить на a в сте­пе­ни n =a в сте­пе­ни 4 , то

2.    Якщо  ко­рень 8 сте­пе­ни из: на­ча­ло ар­гу­мен­та: a в сте­пе­ни m конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: a в сте­пе­ни n , конец ар­гу­мен­та то

3.    Якщо  дробь: чис­ли­тель: a в сте­пе­ни n , зна­ме­на­тель: a в сте­пе­ни m конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: a в сте­пе­ни 4 конец дроби , то

Закінчен­ня ре­чен­ня

А   m плюс n=4

Б   m минус n=4

В   mn=4

Г   m=4n

Д   m=8n

А
Б
В
Г
Д

1

2

3
18.  
i

У пря­мо­кут­ник ABCD впи­са­но рівно­бед­ре­ний три­кут­ник AKD так, як по­ка­за­но на ри­сун­ку. АD = 12 см, АК = 10 см. До кож­но­го по­чат­ку ре­чен­ня (1−3) доберіть його закінчен­ня (А−Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1.    До­в­жи­на сто­ро­ни АВ дорівнює

2.    Радіус кола, опи­са­но­го нав­ко­ло пря­мо­кут­ни­ка АВСD, дорівнює

3.    До­в­жи­на се­ред­ньої лінії тра­пеції АВКD дорівнює

Закінчен­ня ре­чен­ня

А   2 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см

Б    8 см

В    9 см

Г   4 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см

Д    4 см

А
Б
В
Г
Д

1

2

3
19.  
i

Дана гео­мет­рич­на про­гресія (bn), зна­мен­ник якої дорівнює 3, а  b_1 = дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби . Знайдіть суму пер­ших 6 членів про­гресії.

 

Відповідь: ,.

20.  
i

Блок ре­кла­ми скла­дається з 4 ре­клам­них роликів: про шкоду куріння, про шкоду нар­ко­тиків, про шкоду ал­ко­го­лю та ве­ло­си­пед­не місто. Ролик про ве­ло­си­пед­не місто за­пла­но­ва­но по­ка­за­ти двічі  — пер­шим та останнім, а решта трьох роликів  — по од­но­му разу. Скільки всьо­го існує варіантів фор­му­ван­ня цього блоку ре­кла­ми за вка­за­ним по­ряд­ком ре­клам­них роликів?

 

Відповідь: ,.

21.  
i

Даны век­то­ры \veca = левая круг­лая скоб­ка 1; 2 пра­вая круг­лая скоб­ка , \vecb = левая круг­лая скоб­ка 3; минус 6 пра­вая круг­лая скоб­ка и \vecc = левая круг­лая скоб­ка 4; минус 3 пра­вая круг­лая скоб­ка . Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка \veca плюс \vecb пра­вая круг­лая скоб­ка умно­жить на \vecc.

 

Відповідь: ,.

22.  
i

Визна­чте що­най­мен­ше целое зна­чен­ня а, за якого має корені рівнян­ня  ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = a в квад­ра­те минус 11a плюс 29.

 

Відповідь: ,.