Поиск
?


Скопировать ссылку на результаты поиска



Всего: 14    1–14

Добавить в вариант

Уста­новіть відповідність між чис­ло­вим ви­ра­зом (1−4) та його зна­чен­ням (А−Д), якщо  a= дробь: чис­ли­тель: 25, зна­ме­на­тель: 4 конец дроби .

Вираз

1.    дробь: чис­ли­тель: 2a, зна­ме­на­тель: 3 конец дроби

2.    дробь: чис­ли­тель: 1, зна­ме­на­тель: a конец дроби

3.   |9 минус 2a|

4.   a в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка

Зна­чен­ня ви­ра­зу

А    целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2

Б    дробь: чис­ли­тель: 4, зна­ме­на­тель: 25 конец дроби

В    целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2

Г    целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 6

Д    минус целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2

А
Б
В
Г
Д

1

2

3

4

Тип Д9 B4 № 1514
i

Уста­новіть відповідність між чис­ло­вим ви­ра­зом (1−4) та проміжком (А−Д), якому на­ле­жить його зна­чен­ня.

 

Вираз

1.    ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та

2.   8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка

3.    ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка 10

4.   \left| дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби минус 2|

Проміжок

А  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая круг­лая скоб­ка

Б [−3; 0)

В [0; 1)

Г [1; 3)

Д  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3

4

Тип Д9 B4 № 1522
i

Уста­новіть відповідність між ви­ра­зом (1−4) та твер­джен­ням про його зна­чен­ня (А−Д) при а= 15.

Вираз

1.    дробь: чис­ли­тель: 7, зна­ме­на­тель: 3 конец дроби a

2.   2a минус 1

3.   a в квад­ра­те плюс 12a плюс 36

4.   a в квад­ра­те минус 13 в квад­ра­те

Твер­джен­ня про зна­чен­ня ви­ра­зу

А    менше за 20

Б є про­стим чис­лом

В є пар­ним

Г    ділить­ся націло на 3

Д    ділить­ся націло на 5

А
Б
В
Г
Д

1

2

3

4

Тип Д9 B4 № 1530
i

До кож­но­го по­чат­ку ре­чен­ня (1—4) доберіть його закінчен­ня (А—Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня, якщо a= минус 3.

По­ча­ток ре­чен­ня

1.    Зна­чен­ня ви­ра­зу a в сте­пе­ни 0

2.    Зна­чен­ня ви­ра­зу a в квад­ра­те

3.    Зна­чен­ня ви­ра­зу  дробь: чис­ли­тель: |a|, зна­ме­на­тель: a конец дроби

4.    Зна­чен­ня ви­ра­зу  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: a конец ар­гу­мен­та

Закінчен­няре­чен­ня

А    більше за 1

Б    дорівнює 1

В    дорівнює 0

Г    дорівнює −1

Д    менше з а −1

А
Б
В
Г
Д

1

2

3

4

Нехай а — довільне до­дат­не число. Уста­новіть відповідність між ви­ра­зом (1—4) та то­тож­но рівним йому ви­ра­зом (А—Д).

Вираз

1.    левая круг­лая скоб­ка 3a в кубе пра­вая круг­лая скоб­ка в квад­ра­те

2.    ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 27a в сте­пе­ни 6 конец ар­гу­мен­та

3.    дробь: чис­ли­тель: 27a в сте­пе­ни 6 , зна­ме­на­тель: 9a в кубе конец дроби

4.   3 в сте­пе­ни левая круг­лая скоб­ка 2 плюс ло­га­рифм по ос­но­ва­нию 3 a в кубе пра­вая круг­лая скоб­ка

То­тож­норівний вираз

А 9a в сте­пе­ни 6

Б 9a в кубе

В 9a в сте­пе­ни 5

Г 3a в кубе

Д 3a в квад­ра­те

А
Б
В
Г
Д

1

2

3

4

Уста­новіть відповідність між ви­ра­зом (1−4) та то­тож­но рівним йому ви­ра­зом (А−Д), якщо a — довільне до­дат­не число.

Вираз

1.   a в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка

2.    ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка минус a пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та

3.   5: дробь: чис­ли­тель: 1, зна­ме­на­тель: 5a конец дроби

4.   25 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 a пра­вая круг­лая скоб­ка

Тотож норівний вираз

А    −a

Б    дробь: чис­ли­тель: 1, зна­ме­на­тель: a конец дроби

В    a

Г    a2

Д    25a

А
Б
В
Г
Д

1

2

3

4

Уста­новіть відповідність між ви­ра­зом (1−3) та то­тож­но рівним йому ви­ра­зом (А−Д), якщо а — довільне від’ємне число.

Вираз

1.    a0

2.     |a| плюс a

3.    a ло­га­рифм по ос­но­ва­нию 2 2 в сте­пе­ни a

То­тож­но рівний вираз

А    0

Б    2a

В    a2

Г    1

Д    −2a

А
Б
В
Г
Д

1

2

3

Тип 17 № 1546
i

Уста­новіть відповідність між ви­ра­зом (1−3) і то­тож­но рівним йому ви­ра­зом (А−Д), якщо a — довільне до­дат­не число, a ≠ 1.

Вираз

1.   a в сте­пе­ни 4 :a в кубе

2.    дробь: чис­ли­тель: a в квад­ра­те минус a, зна­ме­на­тель: 1 минус a конец дроби

3.   7 в сте­пе­ни левая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 7 a пра­вая круг­лая скоб­ка

То­тож­но рівний вираз

А   a в квад­ра­те

Б   a в сте­пе­ни 7

В    дробь: чис­ли­тель: 1, зна­ме­на­тель: a конец дроби

Г    a

Д    −a

А
Б
В
Г
Д

1

2

3

Тип 17 № 1554
i

Увідповідніть вираз (1−3) із його зна­чен­ням (А−Д), якщо x = ко­рень из 5 минус 1.

Вираз

1.   |x минус ко­рень из 5 |

2.    левая круг­лая скоб­ка ко­рень из 5 плюс 1 пра­вая круг­лая скоб­ка x

3.   x в квад­ра­те плюс 2x плюс 1

Зна­чен­ня ви­ра­зу

А −1

Б    1

В    4

Г    5

Д    6

А
Б
В
Г
Д

1

2

3

Тип 17 № 1558
i

Уста­новіть відповідність між ви­ра­зом (1−3) і твер­джен­ням про його зна­чен­ня (А−Д), яке є пра­виль­ним, якщо a = минус целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 .

Вираз

1.   a в квад­ра­те

2.   a плюс |a|

3.    ло­га­рифм по ос­но­ва­нию 5 5 в сте­пе­ни левая круг­лая скоб­ка a пра­вая круг­лая скоб­ка

Твер­джен­ня про зна­чен­ня ви­ра­зу

А    більше від 5

Б    на­ле­жить проміжку (0; 1)

В є від’ємним чис­лом

Г    на­ле­жить проміжку [1; 5)

Д    дорівнює 0

А
Б
В
Г
Д

1

2

3

Тип 17 № 1565
i

Уста­новіть відповідність між ви­ра­зом (1−3) та твер­джен­ням про його зна­чен­ня (А—Д), яке є пра­виль­ним, якщо a= минус 0,6.

Вираз

1.   a в квад­ра­те

2.   |a|

3.    ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка 4 плюс a пра­вая круг­лая скоб­ка

Твер­джен­ня про зна­чен­ня ви­ра­зу

А    дорівнює дробу  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби

Б   є від’ємним не цілим чис­лом

В    на­ле­жить проміжку [0; 0,5]

Г   є цілим чис­лом

Д    більше за 1

А
Б
В
Г
Д

1

2

3

Ви­ко­ри­сто­ву­ю­чи фор­му­лу Нью­то­на-Лейбніца, об­числіть  S = ин­те­грал пре­де­лы: от 2 до 3, левая круг­лая скоб­ка x в квад­ра­те минус 1 пра­вая круг­лая скоб­ка dx .

А)  дробь: чис­ли­тель: 10, зна­ме­на­тель: 3 конец дроби
Б)  дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби
В) 16
Г)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
Д) 5

Тип 17 № 1646
i

Уста­новіть відповідність між ви­ра­зом (1–3) та проміжком (А–Д), якому на­ле­жить його зна­чен­ня.

Вираз

13 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 4 16 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 3 729

2 дробь: чис­ли­тель: ко­рень из 6 плюс 5, зна­ме­на­тель: 3 конец дроби

3 дробь: чис­ли­тель: 2 минус ко­рень из 2 , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию 4 2 конец дроби

Промiжок

А левая круг­лая скоб­ка 1; 2 пра­вая квад­рат­ная скоб­ка

Б левая круг­лая скоб­ка 2; 3 пра­вая круг­лая скоб­ка

В левая квад­рат­ная скоб­ка 3; 4 пра­вая круг­лая скоб­ка

Г левая квад­рат­ная скоб­ка 0; 1 пра­вая круг­лая скоб­ка

Д левая круг­лая скоб­ка 4; 5 пра­вая квад­рат­ная скоб­ка

А
Б
В
Г
Д

1

2

3

Тип 17 № 1648
i

Уста­новіть відповідність між ви­ра­зом (1–3) та проміжком (А–Д), якому на­ле­жить його зна­чен­ня.

Вираз

1| минус 0,2| плюс 1

2 синус в квад­ра­те дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби

3 дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби конец дроби

Промiжок

А левая круг­лая скоб­ка 0; 1 пра­вая круг­лая скоб­ка

Б левая круг­лая скоб­ка 4; 5 пра­вая круг­лая скоб­ка

В левая квад­рат­ная скоб­ка 1; 2 пра­вая круг­лая скоб­ка

Г левая круг­лая скоб­ка 2; 3 пра­вая круг­лая скоб­ка

Д левая квад­рат­ная скоб­ка 3; 4 пра­вая квад­рат­ная скоб­ка

А
Б
В
Г
Д

1

2

3
Всего: 14    1–14