Поиск
?


Скопировать ссылку на результаты поиска



Всего: 6    1–6

Добавить в вариант

Тип 16 № 1518
i

На ри­сун­ках (1−3) зоб­ра­же­но графіки функцій, визна­че­них на відрізку [−4; 4].

Рис. 1

Рис. 2

Рис. 3

До кож­но­го п очат­ку ре­чен­ня (1−3) доберіть його закінчен­ня (А−Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1.    Функція, графік якої зоб­раж ено на рис. 1,

2.    Функція, графік якої зоб­раж ено на рис. 2,

3.    Функція, графік якої зоб­раж ено на рис. 3,

Закінчен­ня ре­чен­ня

А    рис. є не­пар­ною.

Б    рис. на­бу­ває найбільшо­го зна­чен­ня, що дорівнює 4.

В    рис. є пар­ною.

Г    рис. має три нулі.

Д    рис. має дві точки ло­каль­но­го екс­тре­му­му.

А
Б
В
Г
Д

1

2

3

Тип 16 № 1537
i

Уста­новіть відповідність між функцією (1−3) та її вла­стивістю (А−Д).

Функція

1.   y=x в квад­ра­те

2.   y=x в кубе плюс 1

3.   y=3 минус x

Вла­стивість

А    спадає на всій об­ласті визна­чен­ня

Б    зрос­тає на всій об­ласті визна­чен­ня

В    не­пар­на

Г    парна

Д    об­ластю зна­чень функції є проміжок  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3

До кож­но­го по­чат­ку ре­чен­ня (1−3) доберіть його закінчен­ня (А−Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1.    Функція y= ко­рень из: на­ча­ло ар­гу­мен­та: x минус 4 конец ар­гу­мен­та

2.    Функція y=x плюс 4

3.    Функція y=x в кубе

Закінчен­ня ре­чен­ня

А    спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .

Б    не визна­че­на в точці x = 1.

В    є пар­ною.

Г    на­бу­ває до­дат­но­го зна­чен­ня в точцi x = −3.

Д    є не­пар­ною.

А
Б
В
Г
Д

1

2

3

Тип 16 № 1545
i

На ри­сун­ках (1−3) зоб­ра­же­но графіки функцій, визна­че­них на відрізку [−4; 4].

Уста­новіть відповідність між графіком функції (1−3) та вла­стивістю (А−Д), що має ця функція.

Графік функції

1.

2.

3

Пряма

А    функція має лише один нуль

Б    функція є не­пар­ною

В    функція не має точок екс­тре­му­му

Г    функція на­бу­ває лише до­дат­них зна­чень

Д    графік функції про­хо­дить через точку (3; −2)

А
Б
В
Г
Д

1

2

3

Тип 16 № 1557
i

Уста­новіть відповідність між графіком (1−3) функції, визна­че­ної на проміжку [−4; 4], та її вла­стивістю (А−Д).

Графік функції

1.

2.

3.

Гра­дус­на мiра впи­са­но­го кута ACB

А    функція є не­пар­ною

Б    най­мен­ше зна­чен­ня функції на проміжку [1; 3] дорівнює 2

В   функція є пар­ною

Г    графік функції не має спільних точок із графіком рівнян­ня  левая круг­лая скоб­ка х минус 3 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка у минус 4 пра­вая круг­лая скоб­ка в квад­ра­те = 4

Д    графік функції тричі пе­ре­ти­нає пряму у = 1

А
Б
В
Г
Д

1

2

3

На ри­сун­ках (1−3) зоб­ра­же­но графіки функцій, кожна з яких визна­че­на на проміжку [−3; 3]. Уста­новіть відповідність між графіком (1−3) функції та вла­стивістю (А−Д) цієї функції.

Графік функції

1.

2.

3.

Гра­дус­на мiра впи­са­но­го кута ACB

А    графік функції двічі пе­ре­ти­нає графік функції y = 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

Б    графік функції є фраг­мен­том графіка функції y = 1 минус x

В    графік функції є фраг­мен­том графіка функції y = 1 плюс x

Г    функція є не­пар­ною

Д    функція зрос­тає на проміжку [0; 3]

А
Б
В
Г
Д

1

2

3
Всего: 6    1–6