Поиск
?


Скопировать ссылку на результаты поиска



Всего: 14    1–14

Добавить в вариант

З точки А до кола про­ве­дені до­тичні AB і АС і січна AM, що про­хо­дить через центр кола Про. Крап­ки В, З, M ле­жать на колі (див. мал.). Знайдіть ве­ли­чи­ну кута AOB, якщо  \angle CAO = 25 гра­ду­сов.

А) 25°
Б) 45°
В) 60°
Г) 65°
Д) 75°

У пря­мо­кут­но­му три­кут­ни­ку АВС катет АС = 12 см, гіпо­те­ну­за АВ = 20 см.

Уста­новіть відповідність між відрізком (1–3) та його до­в­жи­ною (А–Д).

Відрізок

1 катет BC

2 радіус кола, опи­са­но­го нав­ко­ло три­кут­ни­ка АВС

3 ви­со­та три­кут­ни­ка АВС, про­ве­де­на до гіпо­те­ну­зи АВ

До­в­жи­на відрізка

А 19,2 см

Б 9,6 см

В 10 см

Г 8 см

Д 16 см

А
Б
В
Г
Д

1

2

3

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

 

I. У будь-який три­кут­ник можна впи­са­ти коло.

II. У будь-який пря­мо­кут­ник можна впи­са­ти коло.

III. У будь-який ромб можна впи­са­ти коло.

А) лише І
Б) лише II і III
В) лише I i ІІ
Г) лише I i ІІI
Д) І, II і III

Тип 9 № 1484
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Діаго­налі будь-якого ромба ділять його кути навпіл.

II. Діаго­налі будь-якого чо­ти­ри­кут­ни­ка точ­кою пе­ре­ти­ну ділять­ся навпіл.

III. Діаго­налі будь-якого квад­ра­та пер­пен­ди­ку­лярні.

А) лише I
Б) I, II та III
В) лише III
Г) лише I та II
Д) лише I та III

На ри­сун­ку зоб­ра­же­но коло з цен­тром у точці О, радіус якого дорівнює 6. Хорду ВС видно з цен­тра кола під кутом 60°, ВК — діаметр. Через точку А до кола про­ве­де­но до­тич­ну АВ, при­чо­му АО=2АВ. Уста­новіть відповідність між відрізком (1−3) та його до­в­жи­ною (А−Д).

Вираз

1.    BK

2.    AB

3.    BC

До­в­жи­на відрізка

А    2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

Б    6

В    6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

Г    3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

Д    12

А
Б
В
Г
Д

1

2

3

Тип 18 № 1517
i

Уста­новіть відповідність між гео­мет­рич­ною фігурою (1—3) та радіусом кола (А—Д), впи­са­но­го в цю гео­мет­рич­ну фігуру.

Рис. 1

Рис. 2

Рис. 3

Гао­мет­рич­на фігура

1.    пра­виль­ний три­кут­ник, ви­со­та якого дорівнює  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та (рис. 1)

2.    ромб, ви­со­та якого дорівнює  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та (рис. 2)

3.    квад­рат, діаго­наль якого дорівнює  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та (рис. 3)

Радіус кола, впи­са­но­го в гео­мет­рич­ну фігуру

А    дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби

Б    1

В    дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби

Г    дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби

Д    дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби

А
Б
В
Г
Д

1

2

3

Тип 18 № 1528
i

На кож­но­му з ри­сунків зоб­ра­же­но коло з цен­тром у точці О та хорду АВ. Кут ACB і ADB — впи­сані кути, які спи­ра­ють­ся на хорду АВ. Уста­новіть відповідність між впи­са­ним кутом АСВ, зоб­ра­же­ним на ри­сун­ках (1−3), та його гра­дус­ною мірою (А−Д).

Ри­сун­ки

1.

2.

3.

Гра­дус­на мiра впи­са­но­го кута ACB

А    100°

Б    90°

В    80°

Г    60°

Д    50°

А
Б
В
Г
Д

1

2

3

На ри­сун­ку зоб­ра­же­но коло із цен­тром у точці O. Хорди AB і АС рівні. AK — діаметр. PM — до­тич­на до кола, про­ве­де­на в точці C,  \angle BAC=80 гра­ду­сов. До кож­но­го по­чат­ку ре­чен­ня (1—3) доберіть його закінчен­ня (А—Д) так, шоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1.    Гра­дус­на міра гула OCM дорівнює

2.    Гра­дус­на міра кута ACP дорівнює

3.    Гра­дус­на міра меншої дуги AB дорівнює

Закінчен­ня ре­чен­ня

А    50°

Б    80°

В    90°

Г    100°

Д    120°

А
Б
В
Г
Д

1

2

3

Уста­новіть відповідність між по­чат­ком ре­чен­ня (1–3) і його закінчен­ням (А−Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

Рис. 1

Рис. 2

Рис. 3

Рис. 4

Рис. 5

По­ча­ток ре­чен­ня

1.    Три­кут­ник, у якого цен­три впи­са­но­го й опи­са­но­го кіл збіга­ють­ся, зоб­ра­же­но на

2.    Три­кут­ник, один із внутрішніх кутів якого дорівнює 30° зоб­ра­же­но на

3.    Три­кут­ник, у якого радіус опи­са­но­го кола більший за 5 см, зоб­ра­же­но на

Закінчен­ня ре­чен­ня

А    рис. 1.

Б    рис. 2.

В    рис. 3.

Г    рис. 4.

Д    рис. 5.

А
Б
В
Г
Д

1

2

3

Тип 18 № 1566
i

У пря­мо­кут­ник ABCD впи­са­но рівно­бед­ре­ний три­кут­ник AKD так, як по­ка­за­но на ри­сун­ку. АD = 12 см, АК = 10 см. До кож­но­го по­чат­ку ре­чен­ня (1−3) доберіть його закінчен­ня (А−Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

По­ча­ток ре­чен­ня

1.    До­в­жи­на сто­ро­ни АВ дорівнює

2.    Радіус кола, опи­са­но­го нав­ко­ло пря­мо­кут­ни­ка АВСD, дорівнює

3.    До­в­жи­на се­ред­ньої лінії тра­пеції АВКD дорівнює

Закінчен­ня ре­чен­ня

А   2 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см

Б    8 см

В    9 см

Г   4 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см

Д    4 см

А
Б
В
Г
Д

1

2

3

Тип 9 № 1592
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Якщо дуга кола ста­но­вить 80 °, то впи­са­ний кут, що спирається на цю дугу кола, дорівнює 40 °.

II. Цен­тром кола, впи­са­но­го в три­кут­ник, є точка пе­ре­ти­ну се­ре­дин­них пер­пен­ди­ку­лярів до його сторін.

III. Се­ре­динні пер­пен­ди­ку­ля­ри до сторін три­кут­ни­ка пе­ре­ти­на­ють­ся в центрі опи­са­но­го кола.

А) Тільки I
Б) Тільки II
В) Тільки III
Г) I та II
Д) II та III
Е) I та III

Тип 9 № 1593
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Якщо радіуси двох кіл дорівню­ють 3 і 5, а відстань між їх цен­тра­ми дорівнює 1, то ці кола пе­ре­ти­на­ють­ся.

II. Впи­сані кути, що спи­ра­ють­ся на ту саму хорду кола, рівні.

III. Нав­ко­ло будь-якого три­кут­ни­ка можна опи­са­ти не більше од­но­го кола.

А) Тільки I
Б) Тільки II
В) Тільки III
Г) I та II
Д) II та III
Е) I та III

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I.Цен­три впи­са­но­го та опи­са­но­го кіл рівно­сто­рон­ньо­го три­кут­ни­ка збіга­ють­ся.

II. Якщо радіуси двох кіл дорівнює 5 і 7, а відстань між їх цен­тра­ми дорівнює 3, то ці кола не мають спільних точок.

III. Коло має безліч центрів си­метрії.

А) Толь­ко I
Б) Толь­ко II
В) Толь­ко III
Г) I и II
Д) II и III
Е) I и III

Тип 18 № 1649
i

У рівно­бед­ре­но­му три­кут­ни­ку ABC бічні сто­ро­ни рівні 10 см, а ос­но­ва дорівнює 12 см.вста­новіть відповідність між відрізками (1-3) і їх до­в­жи­на­ми (А−Д).

Відрізок

1 ви­со­та три­кут­ни­ка ABC, про­ве­де­на до ос­но­ви

2 радіус кола, впи­са­но­го в три­кут­ник АВС

3 радіус кола, опи­са­ної нав­ко­ло три­кут­ни­ка АВC

До­в­жи­на відрізка

А 3 см

Б 6,25 см

В 1,5 см

Г 8 см

Д 6 см

А
Б
В
Г
Д

1

2

3
Всего: 14    1–14