Задания
Версия для печати и копирования в MS Word
Тип 13 № 420
i

Розв’яжіть рівнян­ня  ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка 7 минус x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка плюс 1.

А)  левая круг­лая скоб­ка 1;3 пра­вая круг­лая скоб­ка
Б)  левая круг­лая скоб­ка 0;2 пра­вая круг­лая скоб­ка
В)  левая квад­рат­ная скоб­ка минус 1;0 пра­вая квад­рат­ная скоб­ка
Г)  левая квад­рат­ная скоб­ка 3;6 пра­вая круг­лая скоб­ка
Д)  левая круг­лая скоб­ка минус 2; минус 1 пра­вая круг­лая скоб­ка
Спрятать решение

Ре­ше­ние.

За­ме­тим, что 1= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 5 и ис­поль­зу­ем фор­му­лу  ло­га­рифм по ос­но­ва­нию a b плюс ло­га­рифм по ос­но­ва­нию a c= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка a пра­вая круг­лая скоб­ка bc. Имеем:

\log _5 левая круг­лая скоб­ка 7 минус x пра­вая круг­лая скоб­ка =\log _5 левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка плюс 1 рав­но­силь­но ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка 7 минус x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 5 5 рав­но­силь­но

 

 рав­но­силь­но си­сте­ма вы­ра­же­ний  новая стро­ка 3 минус x боль­ше 0,  новая стро­ка 7 минус x=5 левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний  новая стро­ка минус x боль­ше минус 3,  новая стро­ка 7 минус x=15 минус 5x конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний  новая стро­ка x мень­ше 3,  новая стро­ка x=2 конец си­сте­мы . рав­но­силь­но x=2.

 

Ответ: 2.


Аналоги к заданию № 420: 439 Все

Классификатор алгебры: Ло­га­риф­ми­че­ские урав­не­ния, Ло­га­риф­ми­че­ские урав­не­ния и не­ра­вен­ства
Кодификатор Решу НМТ: 2.1.6 Ло­га­риф­ми­че­ские урав­не­ния