Каталог заданий.
Інтеграли

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 15 № 1491
i

Ви­ко­ри­сто­ву­ю­чи фор­му­лу Нью­то­на-Лейбніца, об­числіть  S = ин­те­грал пре­де­лы: от 1 до 2, 6x в квад­ра­те dx .

А) 42
Б) 22
В) 18
Г) 14
Д) 12

2
Тип 15 № 1499
i

У пря­мо­кутній си­стемі ко­ор­ди­нат на пло­щині зоб­ра­же­но план пар­ко­вої зони, що має форму фігури, об­ме­же­ної графіками функцій y = f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка і у = 3 (див. ри­су­нок). Укажіть фор­му­лу для об­чис­лен­ня площі S цієї фігури.

А) S= при­над­ле­жит t_ минус 1 в кубе левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка d x
Б) S= при­над­ле­жит t_ минус 1 в кубе левая круг­лая скоб­ка 3 минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка d x
В) S= при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 3 пра­вая круг­лая скоб­ка d x
Г) S= при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка d x
Д) S= при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3 минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка d x

3
Тип 15 № 1585
i

Ви­ко­ри­сто­ву­ю­чи фор­му­лу Нью­то­на-Лейбніца, об­числіть  S = ин­те­грал пре­де­лы: от 1 до 2, левая круг­лая скоб­ка x в квад­ра­те плюс 2 пра­вая круг­лая скоб­ка dx .

А)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
Б)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 3 конец дроби
В)  дробь: чис­ли­тель: 14, зна­ме­на­тель: 3 конец дроби
Г)  дробь: чис­ли­тель: 22, зна­ме­на­тель: 3 конец дроби
Д)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 3 конец дроби

4
Тип 15 № 1586
i

Ви­ко­ри­сто­ву­ю­чи фор­му­лу Нью­то­на-Лейбніца, об­числіть  S = ин­те­грал пре­де­лы: от 1 до 2, дробь: чис­ли­тель: 3, зна­ме­на­тель: конец дроби x в квад­ра­те dx .

А) -1,5
Б) -1
В) 0,5
Г) 1
Д) 1,5

5
Тип 15 № 1588
i

На ма­люн­ку зоб­ра­же­но графік функції y = F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка — однією з пер­шо­ряд­них функції f(x), визна­че­ної на інтер­валі (−3; 5). Знайдіть кількість розв'язків рівнян­ня f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0 на відрізку [−2; 4].

А) 6
Б) 7
В) 8
Г) 9
Д) 10

Пройти тестирование по этим заданиям